Metamath Proof Explorer


Theorem nfrmow

Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Nov-2024)

Ref Expression
Hypotheses nfreuw.1
|- F/_ x A
nfreuw.2
|- F/ x ph
Assertion nfrmow
|- F/ x E* y e. A ph

Proof

Step Hyp Ref Expression
1 nfreuw.1
 |-  F/_ x A
2 nfreuw.2
 |-  F/ x ph
3 df-rmo
 |-  ( E* y e. A ph <-> E* y ( y e. A /\ ph ) )
4 1 nfcri
 |-  F/ x y e. A
5 4 2 nfan
 |-  F/ x ( y e. A /\ ph )
6 5 nfmov
 |-  F/ x E* y ( y e. A /\ ph )
7 3 6 nfxfr
 |-  F/ x E* y e. A ph