Metamath Proof Explorer


Theorem nfunsnaov

Description: If the restriction of a class to a singleton is not a function, its operation value is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion nfunsnaov
|- ( -. Fun ( F |` { <. A , B >. } ) -> (( A F B )) = _V )

Proof

Step Hyp Ref Expression
1 df-aov
 |-  (( A F B )) = ( F ''' <. A , B >. )
2 nfunsnafv
 |-  ( -. Fun ( F |` { <. A , B >. } ) -> ( F ''' <. A , B >. ) = _V )
3 1 2 eqtrid
 |-  ( -. Fun ( F |` { <. A , B >. } ) -> (( A F B )) = _V )