Metamath Proof Explorer


Theorem nfunsnafv

Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion nfunsnafv
|- ( -. Fun ( F |` { A } ) -> ( F ''' A ) = _V )

Proof

Step Hyp Ref Expression
1 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
2 1 simprbi
 |-  ( F defAt A -> Fun ( F |` { A } ) )
3 afvnfundmuv
 |-  ( -. F defAt A -> ( F ''' A ) = _V )
4 2 3 nsyl5
 |-  ( -. Fun ( F |` { A } ) -> ( F ''' A ) = _V )