Metamath Proof Explorer


Theorem nfunsnafv

Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion nfunsnafv ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ''' 𝐴 ) = V )

Proof

Step Hyp Ref Expression
1 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
2 1 simprbi ( 𝐹 defAt 𝐴 → Fun ( 𝐹 ↾ { 𝐴 } ) )
3 afvnfundmuv ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = V )
4 2 3 nsyl5 ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ''' 𝐴 ) = V )