Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn . (Contributed by Alexander van der Vekens, 25-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | nfunsnafv | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ''' 𝐴 ) = V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat | ⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) | |
2 | 1 | simprbi | ⊢ ( 𝐹 defAt 𝐴 → Fun ( 𝐹 ↾ { 𝐴 } ) ) |
3 | afvnfundmuv | ⊢ ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = V ) | |
4 | 2 3 | nsyl5 | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ''' 𝐴 ) = V ) |