Metamath Proof Explorer


Theorem afvvfunressn

Description: If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvvfunressn ( ( 𝐹 ''' 𝐴 ) ∈ 𝐵 → Fun ( 𝐹 ↾ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 nfunsnafv ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ''' 𝐴 ) = V )
2 nvelim ( ( 𝐹 ''' 𝐴 ) = V → ¬ ( 𝐹 ''' 𝐴 ) ∈ 𝐵 )
3 1 2 syl ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ¬ ( 𝐹 ''' 𝐴 ) ∈ 𝐵 )
4 3 con4i ( ( 𝐹 ''' 𝐴 ) ∈ 𝐵 → Fun ( 𝐹 ↾ { 𝐴 } ) )