Metamath Proof Explorer


Theorem afvvfunressn

Description: If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvvfunressn
|- ( ( F ''' A ) e. B -> Fun ( F |` { A } ) )

Proof

Step Hyp Ref Expression
1 nfunsnafv
 |-  ( -. Fun ( F |` { A } ) -> ( F ''' A ) = _V )
2 nvelim
 |-  ( ( F ''' A ) = _V -> -. ( F ''' A ) e. B )
3 1 2 syl
 |-  ( -. Fun ( F |` { A } ) -> -. ( F ''' A ) e. B )
4 3 con4i
 |-  ( ( F ''' A ) e. B -> Fun ( F |` { A } ) )