Metamath Proof Explorer


Theorem afvprc

Description: A function's value at a proper class is the universe, compare with fvprc . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvprc ( ¬ 𝐴 ∈ V → ( 𝐹 ''' 𝐴 ) = V )

Proof

Step Hyp Ref Expression
1 prcnel ( ¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹 )
2 ndmafv ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ''' 𝐴 ) = V )
3 1 2 syl ( ¬ 𝐴 ∈ V → ( 𝐹 ''' 𝐴 ) = V )