Metamath Proof Explorer


Theorem afvprc

Description: A function's value at a proper class is the universe, compare with fvprc . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvprc ¬ A V F ''' A = V

Proof

Step Hyp Ref Expression
1 prcnel ¬ A V ¬ A dom F
2 ndmafv ¬ A dom F F ''' A = V
3 1 2 syl ¬ A V F ''' A = V