Metamath Proof Explorer


Theorem nfunsnafv

Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion nfunsnafv ¬ Fun F A F ''' A = V

Proof

Step Hyp Ref Expression
1 df-dfat F defAt A A dom F Fun F A
2 1 simprbi F defAt A Fun F A
3 afvnfundmuv ¬ F defAt A F ''' A = V
4 2 3 nsyl5 ¬ Fun F A F ''' A = V