Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nfunsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo | |
|
2 | vex | |
|
3 | 2 | brresi | |
4 | velsn | |
|
5 | breq1 | |
|
6 | 4 5 | sylbi | |
7 | 6 | biimpa | |
8 | 3 7 | sylbi | |
9 | 8 | moimi | |
10 | 1 9 | syl | |
11 | tz6.12-2 | |
|
12 | 10 11 | nsyl4 | |
13 | 12 | alrimiv | |
14 | relres | |
|
15 | 13 14 | jctil | |
16 | dffun6 | |
|
17 | 15 16 | sylibr | |
18 | 17 | con1i | |