Metamath Proof Explorer


Theorem nfunsn

Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion nfunsn ¬FunFAFA=

Proof

Step Hyp Ref Expression
1 eumo ∃!yAFy*yAFy
2 vex yV
3 2 brresi xFAyxAxFy
4 velsn xAx=A
5 breq1 x=AxFyAFy
6 4 5 sylbi xAxFyAFy
7 6 biimpa xAxFyAFy
8 3 7 sylbi xFAyAFy
9 8 moimi *yAFy*yxFAy
10 1 9 syl ∃!yAFy*yxFAy
11 tz6.12-2 ¬∃!yAFyFA=
12 10 11 nsyl4 ¬FA=*yxFAy
13 12 alrimiv ¬FA=x*yxFAy
14 relres RelFA
15 13 14 jctil ¬FA=RelFAx*yxFAy
16 dffun6 FunFARelFAx*yxFAy
17 15 16 sylibr ¬FA=FunFA
18 17 con1i ¬FunFAFA=