Metamath Proof Explorer


Theorem nfwe

Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nffr.r
|- F/_ x R
nffr.a
|- F/_ x A
Assertion nfwe
|- F/ x R We A

Proof

Step Hyp Ref Expression
1 nffr.r
 |-  F/_ x R
2 nffr.a
 |-  F/_ x A
3 df-we
 |-  ( R We A <-> ( R Fr A /\ R Or A ) )
4 1 2 nffr
 |-  F/ x R Fr A
5 1 2 nfso
 |-  F/ x R Or A
6 4 5 nfan
 |-  F/ x ( R Fr A /\ R Or A )
7 3 6 nfxfr
 |-  F/ x R We A