Metamath Proof Explorer


Theorem nlimon

Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of TakeutiZaring p. 42, who use the symbol K_I for this class. (Contributed by NM, 1-Nov-2004)

Ref Expression
Assertion nlimon
|- { x e. On | ( x = (/) \/ E. y e. On x = suc y ) } = { x e. On | -. Lim x }

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( x e. On -> Ord x )
2 dflim3
 |-  ( Lim x <-> ( Ord x /\ -. ( x = (/) \/ E. y e. On x = suc y ) ) )
3 2 baib
 |-  ( Ord x -> ( Lim x <-> -. ( x = (/) \/ E. y e. On x = suc y ) ) )
4 3 con2bid
 |-  ( Ord x -> ( ( x = (/) \/ E. y e. On x = suc y ) <-> -. Lim x ) )
5 1 4 syl
 |-  ( x e. On -> ( ( x = (/) \/ E. y e. On x = suc y ) <-> -. Lim x ) )
6 5 rabbiia
 |-  { x e. On | ( x = (/) \/ E. y e. On x = suc y ) } = { x e. On | -. Lim x }