Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of TakeutiZaring p. 42, who use the symbol K_I for this class. (Contributed by NM, 1-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | nlimon | |- { x e. On | ( x = (/) \/ E. y e. On x = suc y ) } = { x e. On | -. Lim x } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |- ( x e. On -> Ord x ) |
|
2 | dflim3 | |- ( Lim x <-> ( Ord x /\ -. ( x = (/) \/ E. y e. On x = suc y ) ) ) |
|
3 | 2 | baib | |- ( Ord x -> ( Lim x <-> -. ( x = (/) \/ E. y e. On x = suc y ) ) ) |
4 | 3 | con2bid | |- ( Ord x -> ( ( x = (/) \/ E. y e. On x = suc y ) <-> -. Lim x ) ) |
5 | 1 4 | syl | |- ( x e. On -> ( ( x = (/) \/ E. y e. On x = suc y ) <-> -. Lim x ) ) |
6 | 5 | rabbiia | |- { x e. On | ( x = (/) \/ E. y e. On x = suc y ) } = { x e. On | -. Lim x } |