| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-lim | 
							 |-  ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) )  | 
						
						
							| 2 | 
							
								
							 | 
							3anass | 
							 |-  ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( Ord A /\ ( A =/= (/) /\ A = U. A ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ne | 
							 |-  ( A =/= (/) <-> -. A = (/) )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							 |-  ( Ord A -> ( A =/= (/) <-> -. A = (/) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							orduninsuc | 
							 |-  ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							anbi12d | 
							 |-  ( Ord A -> ( ( A =/= (/) /\ A = U. A ) <-> ( -. A = (/) /\ -. E. x e. On A = suc x ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ioran | 
							 |-  ( -. ( A = (/) \/ E. x e. On A = suc x ) <-> ( -. A = (/) /\ -. E. x e. On A = suc x ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitr4di | 
							 |-  ( Ord A -> ( ( A =/= (/) /\ A = U. A ) <-> -. ( A = (/) \/ E. x e. On A = suc x ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							pm5.32i | 
							 |-  ( ( Ord A /\ ( A =/= (/) /\ A = U. A ) ) <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) )  | 
						
						
							| 10 | 
							
								1 2 9
							 | 
							3bitri | 
							 |-  ( Lim A <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) )  |