| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-lim | 
							⊢ ( Lim  𝐴  ↔  ( Ord  𝐴  ∧  𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							3anass | 
							⊢ ( ( Ord  𝐴  ∧  𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 )  ↔  ( Ord  𝐴  ∧  ( 𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝐴  ≠  ∅  ↔  ¬  𝐴  =  ∅ )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( Ord  𝐴  →  ( 𝐴  ≠  ∅  ↔  ¬  𝐴  =  ∅ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							orduninsuc | 
							⊢ ( Ord  𝐴  →  ( 𝐴  =  ∪  𝐴  ↔  ¬  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							anbi12d | 
							⊢ ( Ord  𝐴  →  ( ( 𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 )  ↔  ( ¬  𝐴  =  ∅  ∧  ¬  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 )  ↔  ( ¬  𝐴  =  ∅  ∧  ¬  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitr4di | 
							⊢ ( Ord  𝐴  →  ( ( 𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 )  ↔  ¬  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							pm5.32i | 
							⊢ ( ( Ord  𝐴  ∧  ( 𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 ) )  ↔  ( Ord  𝐴  ∧  ¬  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) ) )  | 
						
						
							| 10 | 
							
								1 2 9
							 | 
							3bitri | 
							⊢ ( Lim  𝐴  ↔  ( Ord  𝐴  ∧  ¬  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) ) )  |