| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dflim2 | 
							⊢ ( Lim  𝐴  ↔  ( Ord  𝐴  ∧  ∅  ∈  𝐴  ∧  𝐴  =  ∪  𝐴 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ordunisuc2 | 
							⊢ ( Ord  𝐴  →  ( 𝐴  =  ∪  𝐴  ↔  ∀ 𝑥  ∈  𝐴 suc  𝑥  ∈  𝐴 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							anbi2d | 
							⊢ ( Ord  𝐴  →  ( ( ∅  ∈  𝐴  ∧  𝐴  =  ∪  𝐴 )  ↔  ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 suc  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							pm5.32i | 
							⊢ ( ( Ord  𝐴  ∧  ( ∅  ∈  𝐴  ∧  𝐴  =  ∪  𝐴 ) )  ↔  ( Ord  𝐴  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 suc  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							3anass | 
							⊢ ( ( Ord  𝐴  ∧  ∅  ∈  𝐴  ∧  𝐴  =  ∪  𝐴 )  ↔  ( Ord  𝐴  ∧  ( ∅  ∈  𝐴  ∧  𝐴  =  ∪  𝐴 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							3anass | 
							⊢ ( ( Ord  𝐴  ∧  ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 suc  𝑥  ∈  𝐴 )  ↔  ( Ord  𝐴  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 suc  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							3bitr4i | 
							⊢ ( ( Ord  𝐴  ∧  ∅  ∈  𝐴  ∧  𝐴  =  ∪  𝐴 )  ↔  ( Ord  𝐴  ∧  ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 suc  𝑥  ∈  𝐴 ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							bitri | 
							⊢ ( Lim  𝐴  ↔  ( Ord  𝐴  ∧  ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 suc  𝑥  ∈  𝐴 ) )  |