Metamath Proof Explorer


Theorem dflim4

Description: An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005)

Ref Expression
Assertion dflim4 LimAOrdAAxAsucxA

Proof

Step Hyp Ref Expression
1 dflim2 LimAOrdAAA=A
2 ordunisuc2 OrdAA=AxAsucxA
3 2 anbi2d OrdAAA=AAxAsucxA
4 3 pm5.32i OrdAAA=AOrdAAxAsucxA
5 3anass OrdAAA=AOrdAAA=A
6 3anass OrdAAxAsucxAOrdAAxAsucxA
7 4 5 6 3bitr4i OrdAAA=AOrdAAxAsucxA
8 1 7 bitri LimAOrdAAxAsucxA