Metamath Proof Explorer


Theorem nn0ltp1le

Description: Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nn0ltp1le
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( M + 1 ) <_ N ) )

Proof

Step Hyp Ref Expression
1 nn0z
 |-  ( M e. NN0 -> M e. ZZ )
2 nn0z
 |-  ( N e. NN0 -> N e. ZZ )
3 zltp1le
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) )
4 1 2 3 syl2an
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( M + 1 ) <_ N ) )