| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|- ( A e. NN0 -> ( 1 ... A ) e. Fin ) |
| 2 |
|
nn0cn |
|- ( B e. NN0 -> B e. CC ) |
| 3 |
|
fsumconst |
|- ( ( ( 1 ... A ) e. Fin /\ B e. CC ) -> sum_ k e. ( 1 ... A ) B = ( ( # ` ( 1 ... A ) ) x. B ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. NN0 /\ B e. NN0 ) -> sum_ k e. ( 1 ... A ) B = ( ( # ` ( 1 ... A ) ) x. B ) ) |
| 5 |
|
hashfz1 |
|- ( A e. NN0 -> ( # ` ( 1 ... A ) ) = A ) |
| 6 |
5
|
adantr |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( # ` ( 1 ... A ) ) = A ) |
| 7 |
6
|
oveq1d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( # ` ( 1 ... A ) ) x. B ) = ( A x. B ) ) |
| 8 |
4 7
|
eqtr2d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A x. B ) = sum_ k e. ( 1 ... A ) B ) |