| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( A e. NN0 -> ( 1 ... A ) e. Fin ) | 
						
							| 2 |  | nn0cn |  |-  ( B e. NN0 -> B e. CC ) | 
						
							| 3 |  | fsumconst |  |-  ( ( ( 1 ... A ) e. Fin /\ B e. CC ) -> sum_ k e. ( 1 ... A ) B = ( ( # ` ( 1 ... A ) ) x. B ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> sum_ k e. ( 1 ... A ) B = ( ( # ` ( 1 ... A ) ) x. B ) ) | 
						
							| 5 |  | hashfz1 |  |-  ( A e. NN0 -> ( # ` ( 1 ... A ) ) = A ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( # ` ( 1 ... A ) ) = A ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( # ` ( 1 ... A ) ) x. B ) = ( A x. B ) ) | 
						
							| 8 | 4 7 | eqtr2d |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A x. B ) = sum_ k e. ( 1 ... A ) B ) |