| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid | ⊢ ( 𝐴  ∈  ℕ0  →  ( 1 ... 𝐴 )  ∈  Fin ) | 
						
							| 2 |  | nn0cn | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | fsumconst | ⊢ ( ( ( 1 ... 𝐴 )  ∈  Fin  ∧  𝐵  ∈  ℂ )  →  Σ 𝑘  ∈  ( 1 ... 𝐴 ) 𝐵  =  ( ( ♯ ‘ ( 1 ... 𝐴 ) )  ·  𝐵 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( 1 ... 𝐴 ) 𝐵  =  ( ( ♯ ‘ ( 1 ... 𝐴 ) )  ·  𝐵 ) ) | 
						
							| 5 |  | hashfz1 | ⊢ ( 𝐴  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝐴 ) )  =  𝐴 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ♯ ‘ ( 1 ... 𝐴 ) )  =  𝐴 ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( ♯ ‘ ( 1 ... 𝐴 ) )  ·  𝐵 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 8 | 4 7 | eqtr2d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  ·  𝐵 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) 𝐵 ) |