| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
⊢ ( 𝐴 ∈ ℕ0 → ( 1 ... 𝐴 ) ∈ Fin ) |
| 2 |
|
nn0cn |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) |
| 3 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝐴 ) 𝐵 = ( ( ♯ ‘ ( 1 ... 𝐴 ) ) · 𝐵 ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... 𝐴 ) 𝐵 = ( ( ♯ ‘ ( 1 ... 𝐴 ) ) · 𝐵 ) ) |
| 5 |
|
hashfz1 |
⊢ ( 𝐴 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝐴 ) ) = 𝐴 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... 𝐴 ) ) = 𝐴 ) |
| 7 |
6
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... 𝐴 ) ) · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 8 |
4 7
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) 𝐵 ) |