| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0sumshdig | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  ·  𝐵 )  =  ( Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) )  ·  𝐵 ) ) | 
						
							| 4 |  | fzofi | ⊢ ( 0 ..^ ( #b ‘ 𝐴 ) )  ∈  Fin | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 0 ..^ ( #b ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 6 |  | nn0cn | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℂ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 9 | 8 | a1i | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  2  ∈  ℕ ) | 
						
							| 10 |  | elfzoelz | ⊢ ( 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 12 |  | nn0rp0 | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 15 |  | digvalnn0 | ⊢ ( ( 2  ∈  ℕ  ∧  𝑘  ∈  ℤ  ∧  𝐴  ∈  ( 0 [,) +∞ ) )  →  ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ∈  ℕ0 ) | 
						
							| 16 | 9 11 14 15 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0cnd | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ∈  ℂ ) | 
						
							| 18 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) )  →  2  ∈  ℕ0 ) | 
						
							| 20 |  | elfzonn0 | ⊢ ( 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 21 | 19 20 | nn0expcld | ⊢ ( 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) )  →  ( 2 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 22 | 21 | nn0cnd | ⊢ ( 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) )  →  ( 2 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  ( 2 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 24 | 17 23 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 25 | 5 7 24 | fsummulc1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) )  ·  𝐵 )  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) )  ·  𝐵 ) ) | 
						
							| 26 | 3 25 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  ·  𝐵 )  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) )  ·  𝐵 ) ) |