Step |
Hyp |
Ref |
Expression |
1 |
|
nn0sumshdig |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) |
3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) = ( Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) |
4 |
|
fzofi |
⊢ ( 0 ..^ ( #b ‘ 𝐴 ) ) ∈ Fin |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 0 ..^ ( #b ‘ 𝐴 ) ) ∈ Fin ) |
6 |
|
nn0cn |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
8 |
|
2nn |
⊢ 2 ∈ ℕ |
9 |
8
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → 2 ∈ ℕ ) |
10 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) → 𝑘 ∈ ℤ ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → 𝑘 ∈ ℤ ) |
12 |
|
nn0rp0 |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ( 0 [,) +∞ ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
15 |
|
digvalnn0 |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝐴 ∈ ( 0 [,) +∞ ) ) → ( 𝑘 ( digit ‘ 2 ) 𝐴 ) ∈ ℕ0 ) |
16 |
9 11 14 15
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → ( 𝑘 ( digit ‘ 2 ) 𝐴 ) ∈ ℕ0 ) |
17 |
16
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → ( 𝑘 ( digit ‘ 2 ) 𝐴 ) ∈ ℂ ) |
18 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
19 |
18
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) → 2 ∈ ℕ0 ) |
20 |
|
elfzonn0 |
⊢ ( 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) → 𝑘 ∈ ℕ0 ) |
21 |
19 20
|
nn0expcld |
⊢ ( 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) → ( 2 ↑ 𝑘 ) ∈ ℕ0 ) |
22 |
21
|
nn0cnd |
⊢ ( 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
24 |
17 23
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ∈ ℂ ) |
25 |
5 7 24
|
fsummulc1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) · 𝐵 ) = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) |
26 |
3 25
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) |