Metamath Proof Explorer


Theorem elfzonn0

Description: A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018)

Ref Expression
Assertion elfzonn0 ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 elfzouz ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ( ℤ ‘ 0 ) )
2 elnn0uz ( 𝐾 ∈ ℕ0𝐾 ∈ ( ℤ ‘ 0 ) )
3 1 2 sylibr ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 )