| Step | Hyp | Ref | Expression | 
						
							| 1 |  | digval | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 ) ) | 
						
							| 2 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | nnne0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝐵  ≠  0 ) | 
						
							| 6 |  | znegcl | ⊢ ( 𝐾  ∈  ℤ  →  - 𝐾  ∈  ℤ ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  - 𝐾  ∈  ℤ ) | 
						
							| 8 | 3 5 7 | reexpclzd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℝ ) | 
						
							| 9 |  | elrege0 | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  ↔  ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 ) ) | 
						
							| 10 | 9 | simplbi | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  𝑅  ∈  ℝ ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝑅  ∈  ℝ ) | 
						
							| 12 | 8 11 | remulcld | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 )  ∈  ℝ ) | 
						
							| 13 | 12 | flcld | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  ∈  ℤ ) | 
						
							| 14 |  | simp1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝐵  ∈  ℕ ) | 
						
							| 15 | 13 14 | zmodcld | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 )  ∈  ℕ0 ) | 
						
							| 16 | 1 15 | eqeltrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 )  ∈  ℕ0 ) |