| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) |
| 2 |
|
digval |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) mod 𝐵 ) ) |
| 3 |
1 2
|
syl3an2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) mod 𝐵 ) ) |
| 4 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
| 5 |
4
|
anim1i |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) ) |
| 6 |
|
expneg |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐵 ↑ - 𝐾 ) = ( 1 / ( 𝐵 ↑ 𝐾 ) ) ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐵 ↑ - 𝐾 ) = ( 1 / ( 𝐵 ↑ 𝐾 ) ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 ↑ - 𝐾 ) = ( 1 / ( 𝐵 ↑ 𝐾 ) ) ) |
| 9 |
8
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) = ( ( 1 / ( 𝐵 ↑ 𝐾 ) ) · 𝑅 ) ) |
| 10 |
|
elrege0 |
⊢ ( 𝑅 ∈ ( 0 [,) +∞ ) ↔ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) |
| 11 |
|
recn |
⊢ ( 𝑅 ∈ ℝ → 𝑅 ∈ ℂ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → 𝑅 ∈ ℂ ) |
| 13 |
10 12
|
sylbi |
⊢ ( 𝑅 ∈ ( 0 [,) +∞ ) → 𝑅 ∈ ℂ ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → 𝑅 ∈ ℂ ) |
| 15 |
5
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) ) |
| 16 |
|
expcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐵 ↑ 𝐾 ) ∈ ℂ ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 ↑ 𝐾 ) ∈ ℂ ) |
| 18 |
4
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ℂ ) |
| 19 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
| 20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → 𝐵 ≠ 0 ) |
| 21 |
1
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → 𝐾 ∈ ℤ ) |
| 22 |
18 20 21
|
expne0d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 ↑ 𝐾 ) ≠ 0 ) |
| 23 |
14 17 22
|
divrec2d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝑅 / ( 𝐵 ↑ 𝐾 ) ) = ( ( 1 / ( 𝐵 ↑ 𝐾 ) ) · 𝑅 ) ) |
| 24 |
9 23
|
eqtr4d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) = ( 𝑅 / ( 𝐵 ↑ 𝐾 ) ) ) |
| 25 |
24
|
fveq2d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) = ( ⌊ ‘ ( 𝑅 / ( 𝐵 ↑ 𝐾 ) ) ) ) |
| 26 |
25
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) mod 𝐵 ) = ( ( ⌊ ‘ ( 𝑅 / ( 𝐵 ↑ 𝐾 ) ) ) mod 𝐵 ) ) |
| 27 |
3 26
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 ) = ( ( ⌊ ‘ ( 𝑅 / ( 𝐵 ↑ 𝐾 ) ) ) mod 𝐵 ) ) |