| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℤ ) | 
						
							| 2 |  | digval | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 ) ) | 
						
							| 3 | 1 2 | syl3an2 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 ) ) | 
						
							| 4 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 5 | 4 | anim1i | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐵  ∈  ℂ  ∧  𝐾  ∈  ℕ0 ) ) | 
						
							| 6 |  | expneg | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐵 ↑ - 𝐾 )  =  ( 1  /  ( 𝐵 ↑ 𝐾 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐵 ↑ - 𝐾 )  =  ( 1  /  ( 𝐵 ↑ 𝐾 ) ) ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐵 ↑ - 𝐾 )  =  ( 1  /  ( 𝐵 ↑ 𝐾 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 )  =  ( ( 1  /  ( 𝐵 ↑ 𝐾 ) )  ·  𝑅 ) ) | 
						
							| 10 |  | elrege0 | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  ↔  ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 ) ) | 
						
							| 11 |  | recn | ⊢ ( 𝑅  ∈  ℝ  →  𝑅  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 )  →  𝑅  ∈  ℂ ) | 
						
							| 13 | 10 12 | sylbi | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  𝑅  ∈  ℂ ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝑅  ∈  ℂ ) | 
						
							| 15 | 5 | 3adant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐵  ∈  ℂ  ∧  𝐾  ∈  ℕ0 ) ) | 
						
							| 16 |  | expcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝐾 )  ∈  ℂ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐵 ↑ 𝐾 )  ∈  ℂ ) | 
						
							| 18 | 4 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝐵  ∈  ℂ ) | 
						
							| 19 |  | nnne0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝐵  ≠  0 ) | 
						
							| 21 | 1 | 3ad2ant2 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝐾  ∈  ℤ ) | 
						
							| 22 | 18 20 21 | expne0d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐵 ↑ 𝐾 )  ≠  0 ) | 
						
							| 23 | 14 17 22 | divrec2d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝑅  /  ( 𝐵 ↑ 𝐾 ) )  =  ( ( 1  /  ( 𝐵 ↑ 𝐾 ) )  ·  𝑅 ) ) | 
						
							| 24 | 9 23 | eqtr4d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 )  =  ( 𝑅  /  ( 𝐵 ↑ 𝐾 ) ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  =  ( ⌊ ‘ ( 𝑅  /  ( 𝐵 ↑ 𝐾 ) ) ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 )  =  ( ( ⌊ ‘ ( 𝑅  /  ( 𝐵 ↑ 𝐾 ) ) )  mod  𝐵 ) ) | 
						
							| 27 | 3 26 | eqtrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 )  =  ( ( ⌊ ‘ ( 𝑅  /  ( 𝐵 ↑ 𝐾 ) ) )  mod  𝐵 ) ) |