| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ ) |
| 2 |
|
eldifi |
⊢ ( 𝐾 ∈ ( ℤ ∖ ℕ0 ) → 𝐾 ∈ ℤ ) |
| 3 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 4 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
| 5 |
|
elrege0 |
⊢ ( 𝑁 ∈ ( 0 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) ) |
| 6 |
3 4 5
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 [,) +∞ ) ) |
| 7 |
|
digval |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) mod 𝐵 ) ) |
| 8 |
1 2 6 7
|
syl3an |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) mod 𝐵 ) ) |
| 9 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 10 |
|
eldif |
⊢ ( 𝐾 ∈ ( ℤ ∖ ℕ0 ) ↔ ( 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0 ) ) |
| 11 |
|
znnn0nn |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0 ) → - 𝐾 ∈ ℕ ) |
| 12 |
10 11
|
sylbi |
⊢ ( 𝐾 ∈ ( ℤ ∖ ℕ0 ) → - 𝐾 ∈ ℕ ) |
| 13 |
12
|
nnnn0d |
⊢ ( 𝐾 ∈ ( ℤ ∖ ℕ0 ) → - 𝐾 ∈ ℕ0 ) |
| 14 |
|
zexpcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ - 𝐾 ∈ ℕ0 ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℤ ) |
| 15 |
9 13 14
|
syl2an |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℤ ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℤ ) |
| 17 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 18 |
17
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 19 |
16 18
|
zmulcld |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ∈ ℤ ) |
| 20 |
|
flid |
⊢ ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ∈ ℤ → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) = ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) = ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) |
| 22 |
21
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) mod 𝐵 ) = ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) mod 𝐵 ) ) |
| 23 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 24 |
|
reexpcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ - 𝐾 ∈ ℕ0 ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℝ ) |
| 25 |
23 13 24
|
syl2an |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℝ ) |
| 26 |
25
|
recnd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℂ ) |
| 27 |
26
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℂ ) |
| 28 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
| 29 |
28
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 30 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
| 31 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
| 32 |
30 31
|
jca |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 34 |
|
div23 |
⊢ ( ( ( 𝐵 ↑ - 𝐾 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) / 𝐵 ) = ( ( ( 𝐵 ↑ - 𝐾 ) / 𝐵 ) · 𝑁 ) ) |
| 35 |
27 29 33 34
|
syl3anc |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) / 𝐵 ) = ( ( ( 𝐵 ↑ - 𝐾 ) / 𝐵 ) · 𝑁 ) ) |
| 36 |
30
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 37 |
31
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ≠ 0 ) |
| 38 |
12
|
nnzd |
⊢ ( 𝐾 ∈ ( ℤ ∖ ℕ0 ) → - 𝐾 ∈ ℤ ) |
| 39 |
38
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → - 𝐾 ∈ ℤ ) |
| 40 |
36 37 39
|
expm1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ ( - 𝐾 − 1 ) ) = ( ( 𝐵 ↑ - 𝐾 ) / 𝐵 ) ) |
| 41 |
40
|
eqcomd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 ↑ - 𝐾 ) / 𝐵 ) = ( 𝐵 ↑ ( - 𝐾 − 1 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐵 ↑ - 𝐾 ) / 𝐵 ) · 𝑁 ) = ( ( 𝐵 ↑ ( - 𝐾 − 1 ) ) · 𝑁 ) ) |
| 43 |
35 42
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) / 𝐵 ) = ( ( 𝐵 ↑ ( - 𝐾 − 1 ) ) · 𝑁 ) ) |
| 44 |
|
nnm1nn0 |
⊢ ( - 𝐾 ∈ ℕ → ( - 𝐾 − 1 ) ∈ ℕ0 ) |
| 45 |
12 44
|
syl |
⊢ ( 𝐾 ∈ ( ℤ ∖ ℕ0 ) → ( - 𝐾 − 1 ) ∈ ℕ0 ) |
| 46 |
|
zexpcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( - 𝐾 − 1 ) ∈ ℕ0 ) → ( 𝐵 ↑ ( - 𝐾 − 1 ) ) ∈ ℤ ) |
| 47 |
9 45 46
|
syl2an |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ) → ( 𝐵 ↑ ( - 𝐾 − 1 ) ) ∈ ℤ ) |
| 48 |
47
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ ( - 𝐾 − 1 ) ) ∈ ℤ ) |
| 49 |
48 18
|
zmulcld |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 ↑ ( - 𝐾 − 1 ) ) · 𝑁 ) ∈ ℤ ) |
| 50 |
43 49
|
eqeltrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) / 𝐵 ) ∈ ℤ ) |
| 51 |
25
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℝ ) |
| 52 |
3
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 53 |
51 52
|
remulcld |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ∈ ℝ ) |
| 54 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
| 55 |
54
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℝ+ ) |
| 56 |
|
mod0 |
⊢ ( ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) mod 𝐵 ) = 0 ↔ ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) / 𝐵 ) ∈ ℤ ) ) |
| 57 |
53 55 56
|
syl2anc |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) mod 𝐵 ) = 0 ↔ ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) / 𝐵 ) ∈ ℤ ) ) |
| 58 |
50 57
|
mpbird |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) mod 𝐵 ) = 0 ) |
| 59 |
22 58
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑁 ) ) mod 𝐵 ) = 0 ) |
| 60 |
8 59
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ( ℤ ∖ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 ) = 0 ) |