| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℕ ) | 
						
							| 2 |  | eldifi | ⊢ ( 𝐾  ∈  ( ℤ  ∖  ℕ0 )  →  𝐾  ∈  ℤ ) | 
						
							| 3 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 4 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 5 |  | elrege0 | ⊢ ( 𝑁  ∈  ( 0 [,) +∞ )  ↔  ( 𝑁  ∈  ℝ  ∧  0  ≤  𝑁 ) ) | 
						
							| 6 | 3 4 5 | sylanbrc | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 7 |  | digval | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑁  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) )  mod  𝐵 ) ) | 
						
							| 8 | 1 2 6 7 | syl3an | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) )  mod  𝐵 ) ) | 
						
							| 9 |  | nnz | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℤ ) | 
						
							| 10 |  | eldif | ⊢ ( 𝐾  ∈  ( ℤ  ∖  ℕ0 )  ↔  ( 𝐾  ∈  ℤ  ∧  ¬  𝐾  ∈  ℕ0 ) ) | 
						
							| 11 |  | znnn0nn | ⊢ ( ( 𝐾  ∈  ℤ  ∧  ¬  𝐾  ∈  ℕ0 )  →  - 𝐾  ∈  ℕ ) | 
						
							| 12 | 10 11 | sylbi | ⊢ ( 𝐾  ∈  ( ℤ  ∖  ℕ0 )  →  - 𝐾  ∈  ℕ ) | 
						
							| 13 | 12 | nnnn0d | ⊢ ( 𝐾  ∈  ( ℤ  ∖  ℕ0 )  →  - 𝐾  ∈  ℕ0 ) | 
						
							| 14 |  | zexpcl | ⊢ ( ( 𝐵  ∈  ℤ  ∧  - 𝐾  ∈  ℕ0 )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℤ ) | 
						
							| 15 | 9 13 14 | syl2an | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 ) )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℤ ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℤ ) | 
						
							| 17 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 19 | 16 18 | zmulcld | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  ∈  ℤ ) | 
						
							| 20 |  | flid | ⊢ ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  ∈  ℤ  →  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) )  =  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) )  =  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) )  mod  𝐵 )  =  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  mod  𝐵 ) ) | 
						
							| 23 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 24 |  | reexpcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  - 𝐾  ∈  ℕ0 )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℝ ) | 
						
							| 25 | 23 13 24 | syl2an | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 ) )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℝ ) | 
						
							| 26 | 25 | recnd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 ) )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℂ ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℂ ) | 
						
							| 28 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 30 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 31 |  | nnne0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 ) | 
						
							| 32 | 30 31 | jca | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 34 |  | div23 | ⊢ ( ( ( 𝐵 ↑ - 𝐾 )  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  /  𝐵 )  =  ( ( ( 𝐵 ↑ - 𝐾 )  /  𝐵 )  ·  𝑁 ) ) | 
						
							| 35 | 27 29 33 34 | syl3anc | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  /  𝐵 )  =  ( ( ( 𝐵 ↑ - 𝐾 )  /  𝐵 )  ·  𝑁 ) ) | 
						
							| 36 | 30 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 37 | 31 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ≠  0 ) | 
						
							| 38 | 12 | nnzd | ⊢ ( 𝐾  ∈  ( ℤ  ∖  ℕ0 )  →  - 𝐾  ∈  ℤ ) | 
						
							| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  - 𝐾  ∈  ℤ ) | 
						
							| 40 | 36 37 39 | expm1d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ ( - 𝐾  −  1 ) )  =  ( ( 𝐵 ↑ - 𝐾 )  /  𝐵 ) ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐵 ↑ - 𝐾 )  /  𝐵 )  =  ( 𝐵 ↑ ( - 𝐾  −  1 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐵 ↑ - 𝐾 )  /  𝐵 )  ·  𝑁 )  =  ( ( 𝐵 ↑ ( - 𝐾  −  1 ) )  ·  𝑁 ) ) | 
						
							| 43 | 35 42 | eqtrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  /  𝐵 )  =  ( ( 𝐵 ↑ ( - 𝐾  −  1 ) )  ·  𝑁 ) ) | 
						
							| 44 |  | nnm1nn0 | ⊢ ( - 𝐾  ∈  ℕ  →  ( - 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 45 | 12 44 | syl | ⊢ ( 𝐾  ∈  ( ℤ  ∖  ℕ0 )  →  ( - 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 46 |  | zexpcl | ⊢ ( ( 𝐵  ∈  ℤ  ∧  ( - 𝐾  −  1 )  ∈  ℕ0 )  →  ( 𝐵 ↑ ( - 𝐾  −  1 ) )  ∈  ℤ ) | 
						
							| 47 | 9 45 46 | syl2an | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 ) )  →  ( 𝐵 ↑ ( - 𝐾  −  1 ) )  ∈  ℤ ) | 
						
							| 48 | 47 | 3adant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ ( - 𝐾  −  1 ) )  ∈  ℤ ) | 
						
							| 49 | 48 18 | zmulcld | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐵 ↑ ( - 𝐾  −  1 ) )  ·  𝑁 )  ∈  ℤ ) | 
						
							| 50 | 43 49 | eqeltrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  /  𝐵 )  ∈  ℤ ) | 
						
							| 51 | 25 | 3adant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℝ ) | 
						
							| 52 | 3 | 3ad2ant3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 53 | 51 52 | remulcld | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  ∈  ℝ ) | 
						
							| 54 |  | nnrp | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ+ ) | 
						
							| 55 | 54 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 56 |  | mod0 | ⊢ ( ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  mod  𝐵 )  =  0  ↔  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  /  𝐵 )  ∈  ℤ ) ) | 
						
							| 57 | 53 55 56 | syl2anc | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  mod  𝐵 )  =  0  ↔  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  /  𝐵 )  ∈  ℤ ) ) | 
						
							| 58 | 50 57 | mpbird | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 )  mod  𝐵 )  =  0 ) | 
						
							| 59 | 22 58 | eqtrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑁 ) )  mod  𝐵 )  =  0 ) | 
						
							| 60 | 8 59 | eqtrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 )  =  0 ) |