| Step | Hyp | Ref | Expression | 
						
							| 1 |  | digfval | ⊢ ( 𝐵  ∈  ℕ  →  ( digit ‘ 𝐵 )  =  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( digit ‘ 𝐵 )  =  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) ) ) | 
						
							| 3 |  | negeq | ⊢ ( 𝑘  =  𝐾  →  - 𝑘  =  - 𝐾 ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝐵 ↑ - 𝑘 )  =  ( 𝐵 ↑ - 𝐾 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑟  =  𝑅 )  →  ( 𝐵 ↑ - 𝑘 )  =  ( 𝐵 ↑ - 𝐾 ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑟  =  𝑅 )  →  𝑟  =  𝑅 ) | 
						
							| 7 | 5 6 | oveq12d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑟  =  𝑅 )  →  ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 )  =  ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑟  =  𝑅 )  →  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  =  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑟  =  𝑅 )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝑘  =  𝐾  ∧  𝑟  =  𝑅 ) )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 ) ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝐾  ∈  ℤ ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝑅  ∈  ( 0 [,) +∞ ) ) | 
						
							| 13 |  | ovexd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 )  ∈  V ) | 
						
							| 14 | 2 10 11 12 13 | ovmpod | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  𝑅 ) )  mod  𝐵 ) ) |