Step |
Hyp |
Ref |
Expression |
1 |
|
digfval |
⊢ ( 𝐵 ∈ ℕ → ( digit ‘ 𝐵 ) = ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( digit ‘ 𝐵 ) = ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) ) |
3 |
|
negeq |
⊢ ( 𝑘 = 𝐾 → - 𝑘 = - 𝐾 ) |
4 |
3
|
oveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐵 ↑ - 𝑘 ) = ( 𝐵 ↑ - 𝐾 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑟 = 𝑅 ) → ( 𝐵 ↑ - 𝑘 ) = ( 𝐵 ↑ - 𝐾 ) ) |
6 |
|
simpr |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
7 |
5 6
|
oveq12d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑟 = 𝑅 ) → ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) = ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑟 = 𝑅 ) → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) = ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑟 = 𝑅 ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) mod 𝐵 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) ∧ ( 𝑘 = 𝐾 ∧ 𝑟 = 𝑅 ) ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) mod 𝐵 ) ) |
11 |
|
simp2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → 𝐾 ∈ ℤ ) |
12 |
|
simp3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → 𝑅 ∈ ( 0 [,) +∞ ) ) |
13 |
|
ovexd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) mod 𝐵 ) ∈ V ) |
14 |
2 10 11 12 13
|
ovmpod |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑅 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 𝑅 ) ) mod 𝐵 ) ) |