Step |
Hyp |
Ref |
Expression |
1 |
|
digfval |
|- ( B e. NN -> ( digit ` B ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) |
2 |
1
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( digit ` B ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) |
3 |
|
negeq |
|- ( k = K -> -u k = -u K ) |
4 |
3
|
oveq2d |
|- ( k = K -> ( B ^ -u k ) = ( B ^ -u K ) ) |
5 |
4
|
adantr |
|- ( ( k = K /\ r = R ) -> ( B ^ -u k ) = ( B ^ -u K ) ) |
6 |
|
simpr |
|- ( ( k = K /\ r = R ) -> r = R ) |
7 |
5 6
|
oveq12d |
|- ( ( k = K /\ r = R ) -> ( ( B ^ -u k ) x. r ) = ( ( B ^ -u K ) x. R ) ) |
8 |
7
|
fveq2d |
|- ( ( k = K /\ r = R ) -> ( |_ ` ( ( B ^ -u k ) x. r ) ) = ( |_ ` ( ( B ^ -u K ) x. R ) ) ) |
9 |
8
|
oveq1d |
|- ( ( k = K /\ r = R ) -> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) |
10 |
9
|
adantl |
|- ( ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) /\ ( k = K /\ r = R ) ) -> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) |
11 |
|
simp2 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> K e. ZZ ) |
12 |
|
simp3 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> R e. ( 0 [,) +oo ) ) |
13 |
|
ovexd |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) e. _V ) |
14 |
2 10 11 12 13
|
ovmpod |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) |