| Step | Hyp | Ref | Expression | 
						
							| 1 |  | digfval |  |-  ( B e. NN -> ( digit ` B ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( digit ` B ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) | 
						
							| 3 |  | negeq |  |-  ( k = K -> -u k = -u K ) | 
						
							| 4 | 3 | oveq2d |  |-  ( k = K -> ( B ^ -u k ) = ( B ^ -u K ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( k = K /\ r = R ) -> ( B ^ -u k ) = ( B ^ -u K ) ) | 
						
							| 6 |  | simpr |  |-  ( ( k = K /\ r = R ) -> r = R ) | 
						
							| 7 | 5 6 | oveq12d |  |-  ( ( k = K /\ r = R ) -> ( ( B ^ -u k ) x. r ) = ( ( B ^ -u K ) x. R ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( k = K /\ r = R ) -> ( |_ ` ( ( B ^ -u k ) x. r ) ) = ( |_ ` ( ( B ^ -u K ) x. R ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( k = K /\ r = R ) -> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) /\ ( k = K /\ r = R ) ) -> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) | 
						
							| 11 |  | simp2 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> K e. ZZ ) | 
						
							| 12 |  | simp3 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> R e. ( 0 [,) +oo ) ) | 
						
							| 13 |  | ovexd |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) e. _V ) | 
						
							| 14 | 2 10 11 12 13 | ovmpod |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) |