| Step | Hyp | Ref | Expression | 
						
							| 1 |  | digval |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) | 
						
							| 2 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> B e. RR ) | 
						
							| 4 |  | nnne0 |  |-  ( B e. NN -> B =/= 0 ) | 
						
							| 5 | 4 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> B =/= 0 ) | 
						
							| 6 |  | znegcl |  |-  ( K e. ZZ -> -u K e. ZZ ) | 
						
							| 7 | 6 | 3ad2ant2 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> -u K e. ZZ ) | 
						
							| 8 | 3 5 7 | reexpclzd |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( B ^ -u K ) e. RR ) | 
						
							| 9 |  | elrege0 |  |-  ( R e. ( 0 [,) +oo ) <-> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 10 | 9 | simplbi |  |-  ( R e. ( 0 [,) +oo ) -> R e. RR ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> R e. RR ) | 
						
							| 12 | 8 11 | remulcld |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( ( B ^ -u K ) x. R ) e. RR ) | 
						
							| 13 | 12 | flcld |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( |_ ` ( ( B ^ -u K ) x. R ) ) e. ZZ ) | 
						
							| 14 |  | simp1 |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> B e. NN ) | 
						
							| 15 | 13 14 | zmodcld |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) e. NN0 ) | 
						
							| 16 | 1 15 | eqeltrd |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) e. NN0 ) |