| Step |
Hyp |
Ref |
Expression |
| 1 |
|
digval |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) |
| 2 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> B e. RR ) |
| 4 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> B =/= 0 ) |
| 6 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> -u K e. ZZ ) |
| 8 |
3 5 7
|
reexpclzd |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( B ^ -u K ) e. RR ) |
| 9 |
|
elrege0 |
|- ( R e. ( 0 [,) +oo ) <-> ( R e. RR /\ 0 <_ R ) ) |
| 10 |
9
|
simplbi |
|- ( R e. ( 0 [,) +oo ) -> R e. RR ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> R e. RR ) |
| 12 |
8 11
|
remulcld |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( ( B ^ -u K ) x. R ) e. RR ) |
| 13 |
12
|
flcld |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( |_ ` ( ( B ^ -u K ) x. R ) ) e. ZZ ) |
| 14 |
|
simp1 |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> B e. NN ) |
| 15 |
13 14
|
zmodcld |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) e. NN0 ) |
| 16 |
1 15
|
eqeltrd |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) e. NN0 ) |