Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|- ( K e. NN0 -> K e. ZZ ) |
2 |
|
digval |
|- ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) |
3 |
1 2
|
syl3an2 |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) |
4 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
5 |
4
|
anim1i |
|- ( ( B e. NN /\ K e. NN0 ) -> ( B e. CC /\ K e. NN0 ) ) |
6 |
|
expneg |
|- ( ( B e. CC /\ K e. NN0 ) -> ( B ^ -u K ) = ( 1 / ( B ^ K ) ) ) |
7 |
5 6
|
syl |
|- ( ( B e. NN /\ K e. NN0 ) -> ( B ^ -u K ) = ( 1 / ( B ^ K ) ) ) |
8 |
7
|
3adant3 |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B ^ -u K ) = ( 1 / ( B ^ K ) ) ) |
9 |
8
|
oveq1d |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( ( B ^ -u K ) x. R ) = ( ( 1 / ( B ^ K ) ) x. R ) ) |
10 |
|
elrege0 |
|- ( R e. ( 0 [,) +oo ) <-> ( R e. RR /\ 0 <_ R ) ) |
11 |
|
recn |
|- ( R e. RR -> R e. CC ) |
12 |
11
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> R e. CC ) |
13 |
10 12
|
sylbi |
|- ( R e. ( 0 [,) +oo ) -> R e. CC ) |
14 |
13
|
3ad2ant3 |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> R e. CC ) |
15 |
5
|
3adant3 |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B e. CC /\ K e. NN0 ) ) |
16 |
|
expcl |
|- ( ( B e. CC /\ K e. NN0 ) -> ( B ^ K ) e. CC ) |
17 |
15 16
|
syl |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B ^ K ) e. CC ) |
18 |
4
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> B e. CC ) |
19 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
20 |
19
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> B =/= 0 ) |
21 |
1
|
3ad2ant2 |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> K e. ZZ ) |
22 |
18 20 21
|
expne0d |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B ^ K ) =/= 0 ) |
23 |
14 17 22
|
divrec2d |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( R / ( B ^ K ) ) = ( ( 1 / ( B ^ K ) ) x. R ) ) |
24 |
9 23
|
eqtr4d |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( ( B ^ -u K ) x. R ) = ( R / ( B ^ K ) ) ) |
25 |
24
|
fveq2d |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( |_ ` ( ( B ^ -u K ) x. R ) ) = ( |_ ` ( R / ( B ^ K ) ) ) ) |
26 |
25
|
oveq1d |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) = ( ( |_ ` ( R / ( B ^ K ) ) ) mod B ) ) |
27 |
3 26
|
eqtrd |
|- ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( R / ( B ^ K ) ) ) mod B ) ) |