| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z |  |-  ( K e. NN0 -> K e. ZZ ) | 
						
							| 2 |  | digval |  |-  ( ( B e. NN /\ K e. ZZ /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) | 
						
							| 3 | 1 2 | syl3an2 |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) ) | 
						
							| 4 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 5 | 4 | anim1i |  |-  ( ( B e. NN /\ K e. NN0 ) -> ( B e. CC /\ K e. NN0 ) ) | 
						
							| 6 |  | expneg |  |-  ( ( B e. CC /\ K e. NN0 ) -> ( B ^ -u K ) = ( 1 / ( B ^ K ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( B e. NN /\ K e. NN0 ) -> ( B ^ -u K ) = ( 1 / ( B ^ K ) ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B ^ -u K ) = ( 1 / ( B ^ K ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( ( B ^ -u K ) x. R ) = ( ( 1 / ( B ^ K ) ) x. R ) ) | 
						
							| 10 |  | elrege0 |  |-  ( R e. ( 0 [,) +oo ) <-> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 11 |  | recn |  |-  ( R e. RR -> R e. CC ) | 
						
							| 12 | 11 | adantr |  |-  ( ( R e. RR /\ 0 <_ R ) -> R e. CC ) | 
						
							| 13 | 10 12 | sylbi |  |-  ( R e. ( 0 [,) +oo ) -> R e. CC ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> R e. CC ) | 
						
							| 15 | 5 | 3adant3 |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B e. CC /\ K e. NN0 ) ) | 
						
							| 16 |  | expcl |  |-  ( ( B e. CC /\ K e. NN0 ) -> ( B ^ K ) e. CC ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B ^ K ) e. CC ) | 
						
							| 18 | 4 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> B e. CC ) | 
						
							| 19 |  | nnne0 |  |-  ( B e. NN -> B =/= 0 ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> B =/= 0 ) | 
						
							| 21 | 1 | 3ad2ant2 |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> K e. ZZ ) | 
						
							| 22 | 18 20 21 | expne0d |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( B ^ K ) =/= 0 ) | 
						
							| 23 | 14 17 22 | divrec2d |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( R / ( B ^ K ) ) = ( ( 1 / ( B ^ K ) ) x. R ) ) | 
						
							| 24 | 9 23 | eqtr4d |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( ( B ^ -u K ) x. R ) = ( R / ( B ^ K ) ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( |_ ` ( ( B ^ -u K ) x. R ) ) = ( |_ ` ( R / ( B ^ K ) ) ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( ( |_ ` ( ( B ^ -u K ) x. R ) ) mod B ) = ( ( |_ ` ( R / ( B ^ K ) ) ) mod B ) ) | 
						
							| 27 | 3 26 | eqtrd |  |-  ( ( B e. NN /\ K e. NN0 /\ R e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) R ) = ( ( |_ ` ( R / ( B ^ K ) ) ) mod B ) ) |