| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( B e. NN -> B e. NN ) |
| 2 |
|
eldifi |
|- ( K e. ( ZZ \ NN0 ) -> K e. ZZ ) |
| 3 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 4 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
| 5 |
|
elrege0 |
|- ( N e. ( 0 [,) +oo ) <-> ( N e. RR /\ 0 <_ N ) ) |
| 6 |
3 4 5
|
sylanbrc |
|- ( N e. NN0 -> N e. ( 0 [,) +oo ) ) |
| 7 |
|
digval |
|- ( ( B e. NN /\ K e. ZZ /\ N e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) N ) = ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) ) |
| 8 |
1 2 6 7
|
syl3an |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( K ( digit ` B ) N ) = ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) ) |
| 9 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 10 |
|
eldif |
|- ( K e. ( ZZ \ NN0 ) <-> ( K e. ZZ /\ -. K e. NN0 ) ) |
| 11 |
|
znnn0nn |
|- ( ( K e. ZZ /\ -. K e. NN0 ) -> -u K e. NN ) |
| 12 |
10 11
|
sylbi |
|- ( K e. ( ZZ \ NN0 ) -> -u K e. NN ) |
| 13 |
12
|
nnnn0d |
|- ( K e. ( ZZ \ NN0 ) -> -u K e. NN0 ) |
| 14 |
|
zexpcl |
|- ( ( B e. ZZ /\ -u K e. NN0 ) -> ( B ^ -u K ) e. ZZ ) |
| 15 |
9 13 14
|
syl2an |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ -u K ) e. ZZ ) |
| 16 |
15
|
3adant3 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ -u K ) e. ZZ ) |
| 17 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 18 |
17
|
3ad2ant3 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> N e. ZZ ) |
| 19 |
16 18
|
zmulcld |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ -u K ) x. N ) e. ZZ ) |
| 20 |
|
flid |
|- ( ( ( B ^ -u K ) x. N ) e. ZZ -> ( |_ ` ( ( B ^ -u K ) x. N ) ) = ( ( B ^ -u K ) x. N ) ) |
| 21 |
19 20
|
syl |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( |_ ` ( ( B ^ -u K ) x. N ) ) = ( ( B ^ -u K ) x. N ) ) |
| 22 |
21
|
oveq1d |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) = ( ( ( B ^ -u K ) x. N ) mod B ) ) |
| 23 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 24 |
|
reexpcl |
|- ( ( B e. RR /\ -u K e. NN0 ) -> ( B ^ -u K ) e. RR ) |
| 25 |
23 13 24
|
syl2an |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ -u K ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ -u K ) e. CC ) |
| 27 |
26
|
3adant3 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ -u K ) e. CC ) |
| 28 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> N e. CC ) |
| 30 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 31 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
| 32 |
30 31
|
jca |
|- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 34 |
|
div23 |
|- ( ( ( B ^ -u K ) e. CC /\ N e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B ^ -u K ) x. N ) / B ) = ( ( ( B ^ -u K ) / B ) x. N ) ) |
| 35 |
27 29 33 34
|
syl3anc |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) / B ) = ( ( ( B ^ -u K ) / B ) x. N ) ) |
| 36 |
30
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> B e. CC ) |
| 37 |
31
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> B =/= 0 ) |
| 38 |
12
|
nnzd |
|- ( K e. ( ZZ \ NN0 ) -> -u K e. ZZ ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> -u K e. ZZ ) |
| 40 |
36 37 39
|
expm1d |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ ( -u K - 1 ) ) = ( ( B ^ -u K ) / B ) ) |
| 41 |
40
|
eqcomd |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ -u K ) / B ) = ( B ^ ( -u K - 1 ) ) ) |
| 42 |
41
|
oveq1d |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) / B ) x. N ) = ( ( B ^ ( -u K - 1 ) ) x. N ) ) |
| 43 |
35 42
|
eqtrd |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) / B ) = ( ( B ^ ( -u K - 1 ) ) x. N ) ) |
| 44 |
|
nnm1nn0 |
|- ( -u K e. NN -> ( -u K - 1 ) e. NN0 ) |
| 45 |
12 44
|
syl |
|- ( K e. ( ZZ \ NN0 ) -> ( -u K - 1 ) e. NN0 ) |
| 46 |
|
zexpcl |
|- ( ( B e. ZZ /\ ( -u K - 1 ) e. NN0 ) -> ( B ^ ( -u K - 1 ) ) e. ZZ ) |
| 47 |
9 45 46
|
syl2an |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ ( -u K - 1 ) ) e. ZZ ) |
| 48 |
47
|
3adant3 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ ( -u K - 1 ) ) e. ZZ ) |
| 49 |
48 18
|
zmulcld |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ ( -u K - 1 ) ) x. N ) e. ZZ ) |
| 50 |
43 49
|
eqeltrd |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) / B ) e. ZZ ) |
| 51 |
25
|
3adant3 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ -u K ) e. RR ) |
| 52 |
3
|
3ad2ant3 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> N e. RR ) |
| 53 |
51 52
|
remulcld |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ -u K ) x. N ) e. RR ) |
| 54 |
|
nnrp |
|- ( B e. NN -> B e. RR+ ) |
| 55 |
54
|
3ad2ant1 |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> B e. RR+ ) |
| 56 |
|
mod0 |
|- ( ( ( ( B ^ -u K ) x. N ) e. RR /\ B e. RR+ ) -> ( ( ( ( B ^ -u K ) x. N ) mod B ) = 0 <-> ( ( ( B ^ -u K ) x. N ) / B ) e. ZZ ) ) |
| 57 |
53 55 56
|
syl2anc |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( ( B ^ -u K ) x. N ) mod B ) = 0 <-> ( ( ( B ^ -u K ) x. N ) / B ) e. ZZ ) ) |
| 58 |
50 57
|
mpbird |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) mod B ) = 0 ) |
| 59 |
22 58
|
eqtrd |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) = 0 ) |
| 60 |
8 59
|
eqtrd |
|- ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( K ( digit ` B ) N ) = 0 ) |