| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( B e. NN -> B e. NN ) | 
						
							| 2 |  | eldifi |  |-  ( K e. ( ZZ \ NN0 ) -> K e. ZZ ) | 
						
							| 3 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 4 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 5 |  | elrege0 |  |-  ( N e. ( 0 [,) +oo ) <-> ( N e. RR /\ 0 <_ N ) ) | 
						
							| 6 | 3 4 5 | sylanbrc |  |-  ( N e. NN0 -> N e. ( 0 [,) +oo ) ) | 
						
							| 7 |  | digval |  |-  ( ( B e. NN /\ K e. ZZ /\ N e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) N ) = ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) ) | 
						
							| 8 | 1 2 6 7 | syl3an |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( K ( digit ` B ) N ) = ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) ) | 
						
							| 9 |  | nnz |  |-  ( B e. NN -> B e. ZZ ) | 
						
							| 10 |  | eldif |  |-  ( K e. ( ZZ \ NN0 ) <-> ( K e. ZZ /\ -. K e. NN0 ) ) | 
						
							| 11 |  | znnn0nn |  |-  ( ( K e. ZZ /\ -. K e. NN0 ) -> -u K e. NN ) | 
						
							| 12 | 10 11 | sylbi |  |-  ( K e. ( ZZ \ NN0 ) -> -u K e. NN ) | 
						
							| 13 | 12 | nnnn0d |  |-  ( K e. ( ZZ \ NN0 ) -> -u K e. NN0 ) | 
						
							| 14 |  | zexpcl |  |-  ( ( B e. ZZ /\ -u K e. NN0 ) -> ( B ^ -u K ) e. ZZ ) | 
						
							| 15 | 9 13 14 | syl2an |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ -u K ) e. ZZ ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ -u K ) e. ZZ ) | 
						
							| 17 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 18 | 17 | 3ad2ant3 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> N e. ZZ ) | 
						
							| 19 | 16 18 | zmulcld |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ -u K ) x. N ) e. ZZ ) | 
						
							| 20 |  | flid |  |-  ( ( ( B ^ -u K ) x. N ) e. ZZ -> ( |_ ` ( ( B ^ -u K ) x. N ) ) = ( ( B ^ -u K ) x. N ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( |_ ` ( ( B ^ -u K ) x. N ) ) = ( ( B ^ -u K ) x. N ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) = ( ( ( B ^ -u K ) x. N ) mod B ) ) | 
						
							| 23 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 24 |  | reexpcl |  |-  ( ( B e. RR /\ -u K e. NN0 ) -> ( B ^ -u K ) e. RR ) | 
						
							| 25 | 23 13 24 | syl2an |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ -u K ) e. RR ) | 
						
							| 26 | 25 | recnd |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ -u K ) e. CC ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ -u K ) e. CC ) | 
						
							| 28 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 29 | 28 | 3ad2ant3 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> N e. CC ) | 
						
							| 30 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 31 |  | nnne0 |  |-  ( B e. NN -> B =/= 0 ) | 
						
							| 32 | 30 31 | jca |  |-  ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 33 | 32 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 34 |  | div23 |  |-  ( ( ( B ^ -u K ) e. CC /\ N e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B ^ -u K ) x. N ) / B ) = ( ( ( B ^ -u K ) / B ) x. N ) ) | 
						
							| 35 | 27 29 33 34 | syl3anc |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) / B ) = ( ( ( B ^ -u K ) / B ) x. N ) ) | 
						
							| 36 | 30 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> B e. CC ) | 
						
							| 37 | 31 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> B =/= 0 ) | 
						
							| 38 | 12 | nnzd |  |-  ( K e. ( ZZ \ NN0 ) -> -u K e. ZZ ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> -u K e. ZZ ) | 
						
							| 40 | 36 37 39 | expm1d |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ ( -u K - 1 ) ) = ( ( B ^ -u K ) / B ) ) | 
						
							| 41 | 40 | eqcomd |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ -u K ) / B ) = ( B ^ ( -u K - 1 ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) / B ) x. N ) = ( ( B ^ ( -u K - 1 ) ) x. N ) ) | 
						
							| 43 | 35 42 | eqtrd |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) / B ) = ( ( B ^ ( -u K - 1 ) ) x. N ) ) | 
						
							| 44 |  | nnm1nn0 |  |-  ( -u K e. NN -> ( -u K - 1 ) e. NN0 ) | 
						
							| 45 | 12 44 | syl |  |-  ( K e. ( ZZ \ NN0 ) -> ( -u K - 1 ) e. NN0 ) | 
						
							| 46 |  | zexpcl |  |-  ( ( B e. ZZ /\ ( -u K - 1 ) e. NN0 ) -> ( B ^ ( -u K - 1 ) ) e. ZZ ) | 
						
							| 47 | 9 45 46 | syl2an |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) ) -> ( B ^ ( -u K - 1 ) ) e. ZZ ) | 
						
							| 48 | 47 | 3adant3 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ ( -u K - 1 ) ) e. ZZ ) | 
						
							| 49 | 48 18 | zmulcld |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ ( -u K - 1 ) ) x. N ) e. ZZ ) | 
						
							| 50 | 43 49 | eqeltrd |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) / B ) e. ZZ ) | 
						
							| 51 | 25 | 3adant3 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( B ^ -u K ) e. RR ) | 
						
							| 52 | 3 | 3ad2ant3 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> N e. RR ) | 
						
							| 53 | 51 52 | remulcld |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( B ^ -u K ) x. N ) e. RR ) | 
						
							| 54 |  | nnrp |  |-  ( B e. NN -> B e. RR+ ) | 
						
							| 55 | 54 | 3ad2ant1 |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> B e. RR+ ) | 
						
							| 56 |  | mod0 |  |-  ( ( ( ( B ^ -u K ) x. N ) e. RR /\ B e. RR+ ) -> ( ( ( ( B ^ -u K ) x. N ) mod B ) = 0 <-> ( ( ( B ^ -u K ) x. N ) / B ) e. ZZ ) ) | 
						
							| 57 | 53 55 56 | syl2anc |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( ( B ^ -u K ) x. N ) mod B ) = 0 <-> ( ( ( B ^ -u K ) x. N ) / B ) e. ZZ ) ) | 
						
							| 58 | 50 57 | mpbird |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( ( B ^ -u K ) x. N ) mod B ) = 0 ) | 
						
							| 59 | 22 58 | eqtrd |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( ( |_ ` ( ( B ^ -u K ) x. N ) ) mod B ) = 0 ) | 
						
							| 60 | 8 59 | eqtrd |  |-  ( ( B e. NN /\ K e. ( ZZ \ NN0 ) /\ N e. NN0 ) -> ( K ( digit ` B ) N ) = 0 ) |