Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|
2 |
|
eldifi |
|
3 |
|
nn0re |
|
4 |
|
nn0ge0 |
|
5 |
|
elrege0 |
|
6 |
3 4 5
|
sylanbrc |
|
7 |
|
digval |
|
8 |
1 2 6 7
|
syl3an |
|
9 |
|
nnz |
|
10 |
|
eldif |
|
11 |
|
znnn0nn |
|
12 |
10 11
|
sylbi |
|
13 |
12
|
nnnn0d |
|
14 |
|
zexpcl |
|
15 |
9 13 14
|
syl2an |
|
16 |
15
|
3adant3 |
|
17 |
|
nn0z |
|
18 |
17
|
3ad2ant3 |
|
19 |
16 18
|
zmulcld |
|
20 |
|
flid |
|
21 |
19 20
|
syl |
|
22 |
21
|
oveq1d |
|
23 |
|
nnre |
|
24 |
|
reexpcl |
|
25 |
23 13 24
|
syl2an |
|
26 |
25
|
recnd |
|
27 |
26
|
3adant3 |
|
28 |
|
nn0cn |
|
29 |
28
|
3ad2ant3 |
|
30 |
|
nncn |
|
31 |
|
nnne0 |
|
32 |
30 31
|
jca |
|
33 |
32
|
3ad2ant1 |
|
34 |
|
div23 |
|
35 |
27 29 33 34
|
syl3anc |
|
36 |
30
|
3ad2ant1 |
|
37 |
31
|
3ad2ant1 |
|
38 |
12
|
nnzd |
|
39 |
38
|
3ad2ant2 |
|
40 |
36 37 39
|
expm1d |
|
41 |
40
|
eqcomd |
|
42 |
41
|
oveq1d |
|
43 |
35 42
|
eqtrd |
|
44 |
|
nnm1nn0 |
|
45 |
12 44
|
syl |
|
46 |
|
zexpcl |
|
47 |
9 45 46
|
syl2an |
|
48 |
47
|
3adant3 |
|
49 |
48 18
|
zmulcld |
|
50 |
43 49
|
eqeltrd |
|
51 |
25
|
3adant3 |
|
52 |
3
|
3ad2ant3 |
|
53 |
51 52
|
remulcld |
|
54 |
|
nnrp |
|
55 |
54
|
3ad2ant1 |
|
56 |
|
mod0 |
|
57 |
53 55 56
|
syl2anc |
|
58 |
50 57
|
mpbird |
|
59 |
22 58
|
eqtrd |
|
60 |
8 59
|
eqtrd |
|