Metamath Proof Explorer


Theorem dignn0fr

Description: The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020)

Ref Expression
Assertion dignn0fr B K 0 N 0 K digit B N = 0

Proof

Step Hyp Ref Expression
1 id B B
2 eldifi K 0 K
3 nn0re N 0 N
4 nn0ge0 N 0 0 N
5 elrege0 N 0 +∞ N 0 N
6 3 4 5 sylanbrc N 0 N 0 +∞
7 digval B K N 0 +∞ K digit B N = B K N mod B
8 1 2 6 7 syl3an B K 0 N 0 K digit B N = B K N mod B
9 nnz B B
10 eldif K 0 K ¬ K 0
11 znnn0nn K ¬ K 0 K
12 10 11 sylbi K 0 K
13 12 nnnn0d K 0 K 0
14 zexpcl B K 0 B K
15 9 13 14 syl2an B K 0 B K
16 15 3adant3 B K 0 N 0 B K
17 nn0z N 0 N
18 17 3ad2ant3 B K 0 N 0 N
19 16 18 zmulcld B K 0 N 0 B K N
20 flid B K N B K N = B K N
21 19 20 syl B K 0 N 0 B K N = B K N
22 21 oveq1d B K 0 N 0 B K N mod B = B K N mod B
23 nnre B B
24 reexpcl B K 0 B K
25 23 13 24 syl2an B K 0 B K
26 25 recnd B K 0 B K
27 26 3adant3 B K 0 N 0 B K
28 nn0cn N 0 N
29 28 3ad2ant3 B K 0 N 0 N
30 nncn B B
31 nnne0 B B 0
32 30 31 jca B B B 0
33 32 3ad2ant1 B K 0 N 0 B B 0
34 div23 B K N B B 0 B K N B = B K B N
35 27 29 33 34 syl3anc B K 0 N 0 B K N B = B K B N
36 30 3ad2ant1 B K 0 N 0 B
37 31 3ad2ant1 B K 0 N 0 B 0
38 12 nnzd K 0 K
39 38 3ad2ant2 B K 0 N 0 K
40 36 37 39 expm1d B K 0 N 0 B - K - 1 = B K B
41 40 eqcomd B K 0 N 0 B K B = B - K - 1
42 41 oveq1d B K 0 N 0 B K B N = B - K - 1 N
43 35 42 eqtrd B K 0 N 0 B K N B = B - K - 1 N
44 nnm1nn0 K - K - 1 0
45 12 44 syl K 0 - K - 1 0
46 zexpcl B - K - 1 0 B - K - 1
47 9 45 46 syl2an B K 0 B - K - 1
48 47 3adant3 B K 0 N 0 B - K - 1
49 48 18 zmulcld B K 0 N 0 B - K - 1 N
50 43 49 eqeltrd B K 0 N 0 B K N B
51 25 3adant3 B K 0 N 0 B K
52 3 3ad2ant3 B K 0 N 0 N
53 51 52 remulcld B K 0 N 0 B K N
54 nnrp B B +
55 54 3ad2ant1 B K 0 N 0 B +
56 mod0 B K N B + B K N mod B = 0 B K N B
57 53 55 56 syl2anc B K 0 N 0 B K N mod B = 0 B K N B
58 50 57 mpbird B K 0 N 0 B K N mod B = 0
59 22 58 eqtrd B K 0 N 0 B K N mod B = 0
60 8 59 eqtrd B K 0 N 0 K digit B N = 0