Metamath Proof Explorer


Theorem dignn0ldlem

Description: Lemma for dignnld . (Contributed by AV, 25-May-2020)

Ref Expression
Assertion dignn0ldlem B2NKlogBN+1N<BK

Proof

Step Hyp Ref Expression
1 nnre NN
2 1 3ad2ant2 B2NKlogBN+1N
3 eluzelre B2B
4 3 3ad2ant1 B2NKlogBN+1B
5 eluz2nn B2B
6 nnnn0 BB0
7 6 nn0ge0d B0B
8 5 7 syl B20B
9 8 3ad2ant1 B2NKlogBN+10B
10 nnrp NN+
11 relogbzcl B2N+logBN
12 10 11 sylan2 B2NlogBN
13 12 3adant3 B2NKlogBN+1logBN
14 4 9 13 recxpcld B2NKlogBN+1BlogBN
15 eluzelre KlogBN+1K
16 15 3ad2ant3 B2NKlogBN+1K
17 4 9 16 recxpcld B2NKlogBN+1BK
18 1 leidd NNN
19 18 adantl B2NNN
20 eluz2cnn0n1 B2B01
21 nncn NN
22 nnne0 NN0
23 eldifsn N0NN0
24 21 22 23 sylanbrc NN0
25 cxplogb B01N0BlogBN=N
26 20 24 25 syl2an B2NBlogBN=N
27 19 26 breqtrrd B2NNBlogBN
28 27 3adant3 B2NKlogBN+1NBlogBN
29 eluz2 KlogBN+1logBN+1KlogBN+1K
30 12 adantl logBN+1KB2NlogBN
31 flltp1 logBNlogBN<logBN+1
32 30 31 syl logBN+1KB2NlogBN<logBN+1
33 zre logBN+1logBN+1
34 33 adantr logBN+1KlogBN+1
35 34 adantr logBN+1KB2NlogBN+1
36 zre KK
37 36 adantl logBN+1KK
38 37 adantr logBN+1KB2NK
39 ltletr logBNlogBN+1KlogBN<logBN+1logBN+1KlogBN<K
40 30 35 38 39 syl3anc logBN+1KB2NlogBN<logBN+1logBN+1KlogBN<K
41 32 40 mpand logBN+1KB2NlogBN+1KlogBN<K
42 41 ex logBN+1KB2NlogBN+1KlogBN<K
43 42 com23 logBN+1KlogBN+1KB2NlogBN<K
44 43 3impia logBN+1KlogBN+1KB2NlogBN<K
45 44 com12 B2NlogBN+1KlogBN+1KlogBN<K
46 29 45 biimtrid B2NKlogBN+1logBN<K
47 46 3impia B2NKlogBN+1logBN<K
48 eluz2gt1 B21<B
49 3 48 jca B2B1<B
50 49 3ad2ant1 B2NKlogBN+1B1<B
51 cxplt B1<BlogBNKlogBN<KBlogBN<BK
52 50 13 16 51 syl12anc B2NKlogBN+1logBN<KBlogBN<BK
53 47 52 mpbid B2NKlogBN+1BlogBN<BK
54 2 14 17 28 53 lelttrd B2NKlogBN+1N<BK
55 eluzelcn B2B
56 55 3ad2ant1 B2NKlogBN+1B
57 eluz2n0 B2B0
58 57 3ad2ant1 B2NKlogBN+1B0
59 eluzelz KlogBN+1K
60 59 3ad2ant3 B2NKlogBN+1K
61 cxpexpz BB0KBK=BK
62 61 breq2d BB0KN<BKN<BK
63 56 58 60 62 syl3anc B2NKlogBN+1N<BKN<BK
64 54 63 mpbid B2NKlogBN+1N<BK