Metamath Proof Explorer


Theorem dignn0ldlem

Description: Lemma for dignnld . (Contributed by AV, 25-May-2020)

Ref Expression
Assertion dignn0ldlem B 2 N K log B N + 1 N < B K

Proof

Step Hyp Ref Expression
1 nnre N N
2 1 3ad2ant2 B 2 N K log B N + 1 N
3 eluzelre B 2 B
4 3 3ad2ant1 B 2 N K log B N + 1 B
5 eluz2nn B 2 B
6 nnnn0 B B 0
7 6 nn0ge0d B 0 B
8 5 7 syl B 2 0 B
9 8 3ad2ant1 B 2 N K log B N + 1 0 B
10 nnrp N N +
11 relogbzcl B 2 N + log B N
12 10 11 sylan2 B 2 N log B N
13 12 3adant3 B 2 N K log B N + 1 log B N
14 4 9 13 recxpcld B 2 N K log B N + 1 B log B N
15 eluzelre K log B N + 1 K
16 15 3ad2ant3 B 2 N K log B N + 1 K
17 4 9 16 recxpcld B 2 N K log B N + 1 B K
18 1 leidd N N N
19 18 adantl B 2 N N N
20 eluz2cnn0n1 B 2 B 0 1
21 nncn N N
22 nnne0 N N 0
23 eldifsn N 0 N N 0
24 21 22 23 sylanbrc N N 0
25 cxplogb B 0 1 N 0 B log B N = N
26 20 24 25 syl2an B 2 N B log B N = N
27 19 26 breqtrrd B 2 N N B log B N
28 27 3adant3 B 2 N K log B N + 1 N B log B N
29 eluz2 K log B N + 1 log B N + 1 K log B N + 1 K
30 12 adantl log B N + 1 K B 2 N log B N
31 flltp1 log B N log B N < log B N + 1
32 30 31 syl log B N + 1 K B 2 N log B N < log B N + 1
33 zre log B N + 1 log B N + 1
34 33 adantr log B N + 1 K log B N + 1
35 34 adantr log B N + 1 K B 2 N log B N + 1
36 zre K K
37 36 adantl log B N + 1 K K
38 37 adantr log B N + 1 K B 2 N K
39 ltletr log B N log B N + 1 K log B N < log B N + 1 log B N + 1 K log B N < K
40 30 35 38 39 syl3anc log B N + 1 K B 2 N log B N < log B N + 1 log B N + 1 K log B N < K
41 32 40 mpand log B N + 1 K B 2 N log B N + 1 K log B N < K
42 41 ex log B N + 1 K B 2 N log B N + 1 K log B N < K
43 42 com23 log B N + 1 K log B N + 1 K B 2 N log B N < K
44 43 3impia log B N + 1 K log B N + 1 K B 2 N log B N < K
45 44 com12 B 2 N log B N + 1 K log B N + 1 K log B N < K
46 29 45 syl5bi B 2 N K log B N + 1 log B N < K
47 46 3impia B 2 N K log B N + 1 log B N < K
48 eluz2gt1 B 2 1 < B
49 3 48 jca B 2 B 1 < B
50 49 3ad2ant1 B 2 N K log B N + 1 B 1 < B
51 cxplt B 1 < B log B N K log B N < K B log B N < B K
52 50 13 16 51 syl12anc B 2 N K log B N + 1 log B N < K B log B N < B K
53 47 52 mpbid B 2 N K log B N + 1 B log B N < B K
54 2 14 17 28 53 lelttrd B 2 N K log B N + 1 N < B K
55 eluzelcn B 2 B
56 55 3ad2ant1 B 2 N K log B N + 1 B
57 eluz2n0 B 2 B 0
58 57 3ad2ant1 B 2 N K log B N + 1 B 0
59 eluzelz K log B N + 1 K
60 59 3ad2ant3 B 2 N K log B N + 1 K
61 cxpexpz B B 0 K B K = B K
62 61 breq2d B B 0 K N < B K N < B K
63 56 58 60 62 syl3anc B 2 N K log B N + 1 N < B K N < B K
64 54 63 mpbid B 2 N K log B N + 1 N < B K