Description: Lemma for dignnld . (Contributed by AV, 25-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dignn0ldlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre | |
|
2 | 1 | 3ad2ant2 | |
3 | eluzelre | |
|
4 | 3 | 3ad2ant1 | |
5 | eluz2nn | |
|
6 | nnnn0 | |
|
7 | 6 | nn0ge0d | |
8 | 5 7 | syl | |
9 | 8 | 3ad2ant1 | |
10 | nnrp | |
|
11 | relogbzcl | |
|
12 | 10 11 | sylan2 | |
13 | 12 | 3adant3 | |
14 | 4 9 13 | recxpcld | |
15 | eluzelre | |
|
16 | 15 | 3ad2ant3 | |
17 | 4 9 16 | recxpcld | |
18 | 1 | leidd | |
19 | 18 | adantl | |
20 | eluz2cnn0n1 | |
|
21 | nncn | |
|
22 | nnne0 | |
|
23 | eldifsn | |
|
24 | 21 22 23 | sylanbrc | |
25 | cxplogb | |
|
26 | 20 24 25 | syl2an | |
27 | 19 26 | breqtrrd | |
28 | 27 | 3adant3 | |
29 | eluz2 | |
|
30 | 12 | adantl | |
31 | flltp1 | |
|
32 | 30 31 | syl | |
33 | zre | |
|
34 | 33 | adantr | |
35 | 34 | adantr | |
36 | zre | |
|
37 | 36 | adantl | |
38 | 37 | adantr | |
39 | ltletr | |
|
40 | 30 35 38 39 | syl3anc | |
41 | 32 40 | mpand | |
42 | 41 | ex | |
43 | 42 | com23 | |
44 | 43 | 3impia | |
45 | 44 | com12 | |
46 | 29 45 | biimtrid | |
47 | 46 | 3impia | |
48 | eluz2gt1 | |
|
49 | 3 48 | jca | |
50 | 49 | 3ad2ant1 | |
51 | cxplt | |
|
52 | 50 13 16 51 | syl12anc | |
53 | 47 52 | mpbid | |
54 | 2 14 17 28 53 | lelttrd | |
55 | eluzelcn | |
|
56 | 55 | 3ad2ant1 | |
57 | eluz2n0 | |
|
58 | 57 | 3ad2ant1 | |
59 | eluzelz | |
|
60 | 59 | 3ad2ant3 | |
61 | cxpexpz | |
|
62 | 61 | breq2d | |
63 | 56 58 60 62 | syl3anc | |
64 | 54 63 | mpbid | |