Metamath Proof Explorer


Theorem cxplt

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxplt A1<ABCB<CAB<AC

Proof

Step Hyp Ref Expression
1 simprl A1<ABCB
2 rplogcl A1<AlogA+
3 2 adantr A1<ABClogA+
4 3 rpred A1<ABClogA
5 1 4 remulcld A1<ABCBlogA
6 simprr A1<ABCC
7 6 4 remulcld A1<ABCClogA
8 eflt BlogAClogABlogA<ClogAeBlogA<eClogA
9 5 7 8 syl2anc A1<ABCBlogA<ClogAeBlogA<eClogA
10 1 6 3 ltmul1d A1<ABCB<CBlogA<ClogA
11 simpll A1<ABCA
12 11 recnd A1<ABCA
13 0red A1<ABC0
14 1red A1<ABC1
15 0lt1 0<1
16 15 a1i A1<ABC0<1
17 simplr A1<ABC1<A
18 13 14 11 16 17 lttrd A1<ABC0<A
19 18 gt0ne0d A1<ABCA0
20 1 recnd A1<ABCB
21 cxpef AA0BAB=eBlogA
22 12 19 20 21 syl3anc A1<ABCAB=eBlogA
23 6 recnd A1<ABCC
24 cxpef AA0CAC=eClogA
25 12 19 23 24 syl3anc A1<ABCAC=eClogA
26 22 25 breq12d A1<ABCAB<ACeBlogA<eClogA
27 9 10 26 3bitr4d A1<ABCB<CAB<AC