Metamath Proof Explorer


Theorem cxplt

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxplt A 1 < A B C B < C A B < A C

Proof

Step Hyp Ref Expression
1 simprl A 1 < A B C B
2 rplogcl A 1 < A log A +
3 2 adantr A 1 < A B C log A +
4 3 rpred A 1 < A B C log A
5 1 4 remulcld A 1 < A B C B log A
6 simprr A 1 < A B C C
7 6 4 remulcld A 1 < A B C C log A
8 eflt B log A C log A B log A < C log A e B log A < e C log A
9 5 7 8 syl2anc A 1 < A B C B log A < C log A e B log A < e C log A
10 1 6 3 ltmul1d A 1 < A B C B < C B log A < C log A
11 simpll A 1 < A B C A
12 11 recnd A 1 < A B C A
13 0red A 1 < A B C 0
14 1red A 1 < A B C 1
15 0lt1 0 < 1
16 15 a1i A 1 < A B C 0 < 1
17 simplr A 1 < A B C 1 < A
18 13 14 11 16 17 lttrd A 1 < A B C 0 < A
19 18 gt0ne0d A 1 < A B C A 0
20 1 recnd A 1 < A B C B
21 cxpef A A 0 B A B = e B log A
22 12 19 20 21 syl3anc A 1 < A B C A B = e B log A
23 6 recnd A 1 < A B C C
24 cxpef A A 0 C A C = e C log A
25 12 19 23 24 syl3anc A 1 < A B C A C = e C log A
26 22 25 breq12d A 1 < A B C A B < A C e B log A < e C log A
27 9 10 26 3bitr4d A 1 < A B C B < C A B < A C