Metamath Proof Explorer


Theorem cxplt

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxplt
|- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c B ) < ( A ^c C ) ) )

Proof

Step Hyp Ref Expression
1 simprl
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> B e. RR )
2 rplogcl
 |-  ( ( A e. RR /\ 1 < A ) -> ( log ` A ) e. RR+ )
3 2 adantr
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( log ` A ) e. RR+ )
4 3 rpred
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( log ` A ) e. RR )
5 1 4 remulcld
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B x. ( log ` A ) ) e. RR )
6 simprr
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> C e. RR )
7 6 4 remulcld
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( C x. ( log ` A ) ) e. RR )
8 eflt
 |-  ( ( ( B x. ( log ` A ) ) e. RR /\ ( C x. ( log ` A ) ) e. RR ) -> ( ( B x. ( log ` A ) ) < ( C x. ( log ` A ) ) <-> ( exp ` ( B x. ( log ` A ) ) ) < ( exp ` ( C x. ( log ` A ) ) ) ) )
9 5 7 8 syl2anc
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( B x. ( log ` A ) ) < ( C x. ( log ` A ) ) <-> ( exp ` ( B x. ( log ` A ) ) ) < ( exp ` ( C x. ( log ` A ) ) ) ) )
10 1 6 3 ltmul1d
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( B x. ( log ` A ) ) < ( C x. ( log ` A ) ) ) )
11 simpll
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A e. RR )
12 11 recnd
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A e. CC )
13 0red
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 e. RR )
14 1red
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 e. RR )
15 0lt1
 |-  0 < 1
16 15 a1i
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < 1 )
17 simplr
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 < A )
18 13 14 11 16 17 lttrd
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < A )
19 18 gt0ne0d
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A =/= 0 )
20 1 recnd
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> B e. CC )
21 cxpef
 |-  ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )
22 12 19 20 21 syl3anc
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )
23 6 recnd
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> C e. CC )
24 cxpef
 |-  ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) )
25 12 19 23 24 syl3anc
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) )
26 22 25 breq12d
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c B ) < ( A ^c C ) <-> ( exp ` ( B x. ( log ` A ) ) ) < ( exp ` ( C x. ( log ` A ) ) ) ) )
27 9 10 26 3bitr4d
 |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c B ) < ( A ^c C ) ) )