Metamath Proof Explorer


Theorem cxple

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxple A1<ABCBCABAC

Proof

Step Hyp Ref Expression
1 cxplt A1<ACBC<BAC<AB
2 1 ancom2s A1<ABCC<BAC<AB
3 2 notbid A1<ABC¬C<B¬AC<AB
4 lenlt BCBC¬C<B
5 4 adantl A1<ABCBC¬C<B
6 simpll A1<ABCA
7 0red A1<ABC0
8 1red A1<ABC1
9 0lt1 0<1
10 9 a1i A1<ABC0<1
11 simplr A1<ABC1<A
12 7 8 6 10 11 lttrd A1<ABC0<A
13 7 6 12 ltled A1<ABC0A
14 simprl A1<ABCB
15 recxpcl A0ABAB
16 6 13 14 15 syl3anc A1<ABCAB
17 simprr A1<ABCC
18 recxpcl A0ACAC
19 6 13 17 18 syl3anc A1<ABCAC
20 16 19 lenltd A1<ABCABAC¬AC<AB
21 3 5 20 3bitr4d A1<ABCBCABAC