Metamath Proof Explorer


Theorem div23

Description: A commutative/associative law for division. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion div23 ABCC0ABC=ACB

Proof

Step Hyp Ref Expression
1 mulcom ABAB=BA
2 1 oveq1d ABABC=BAC
3 2 3adant3 ABCC0ABC=BAC
4 divass BACC0BAC=BAC
5 4 3com12 ABCC0BAC=BAC
6 simp2 ABCC0B
7 divcl ACC0AC
8 7 3expb ACC0AC
9 8 3adant2 ABCC0AC
10 6 9 mulcomd ABCC0BAC=ACB
11 3 5 10 3eqtrd ABCC0ABC=ACB