Metamath Proof Explorer


Theorem divass

Description: An associative law for division. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion divass ABCC0ABC=ABC

Proof

Step Hyp Ref Expression
1 reccl CC01C
2 mulass AB1CAB1C=AB1C
3 1 2 syl3an3 ABCC0AB1C=AB1C
4 mulcl ABAB
5 4 3adant3 ABCC0AB
6 simp3l ABCC0C
7 simp3r ABCC0C0
8 divrec ABCC0ABC=AB1C
9 5 6 7 8 syl3anc ABCC0ABC=AB1C
10 simp2 ABCC0B
11 divrec BCC0BC=B1C
12 10 6 7 11 syl3anc ABCC0BC=B1C
13 12 oveq2d ABCC0ABC=AB1C
14 3 9 13 3eqtr4d ABCC0ABC=ABC