Metamath Proof Explorer


Theorem divass

Description: An associative law for division. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion divass
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( A x. ( B / C ) ) )

Proof

Step Hyp Ref Expression
1 reccl
 |-  ( ( C e. CC /\ C =/= 0 ) -> ( 1 / C ) e. CC )
2 mulass
 |-  ( ( A e. CC /\ B e. CC /\ ( 1 / C ) e. CC ) -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) )
3 1 2 syl3an3
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) )
4 mulcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC )
5 4 3adant3
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. B ) e. CC )
6 simp3l
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC )
7 simp3r
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 )
8 divrec
 |-  ( ( ( A x. B ) e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( A x. B ) / C ) = ( ( A x. B ) x. ( 1 / C ) ) )
9 5 6 7 8 syl3anc
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A x. B ) x. ( 1 / C ) ) )
10 simp2
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC )
11 divrec
 |-  ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) = ( B x. ( 1 / C ) ) )
12 10 6 7 11 syl3anc
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) = ( B x. ( 1 / C ) ) )
13 12 oveq2d
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) )
14 3 9 13 3eqtr4d
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( A x. ( B / C ) ) )