Step |
Hyp |
Ref |
Expression |
1 |
|
reccl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 1 / 𝐶 ) ∈ ℂ ) |
2 |
|
mulass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 1 / 𝐶 ) ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
3 |
1 2
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
4 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
6 |
|
simp3l |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) |
7 |
|
simp3r |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ≠ 0 ) |
8 |
|
divrec |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) ) |
10 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
11 |
|
divrec |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
12 |
10 6 7 11
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · ( 𝐵 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
14 |
3 9 13
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |