Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
2 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
3 |
|
reccl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
4 |
3
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
5 |
1 2 4
|
mul12d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A x. ( 1 / B ) ) ) = ( A x. ( B x. ( 1 / B ) ) ) ) |
6 |
|
recid |
|- ( ( B e. CC /\ B =/= 0 ) -> ( B x. ( 1 / B ) ) = 1 ) |
7 |
6
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( 1 / B ) ) = 1 ) |
8 |
7
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. ( B x. ( 1 / B ) ) ) = ( A x. 1 ) ) |
9 |
2
|
mulid1d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. 1 ) = A ) |
10 |
5 8 9
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A x. ( 1 / B ) ) ) = A ) |
11 |
2 4
|
mulcld |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. ( 1 / B ) ) e. CC ) |
12 |
|
3simpc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
13 |
|
divmul |
|- ( ( A e. CC /\ ( A x. ( 1 / B ) ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = ( A x. ( 1 / B ) ) <-> ( B x. ( A x. ( 1 / B ) ) ) = A ) ) |
14 |
2 11 12 13
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = ( A x. ( 1 / B ) ) <-> ( B x. ( A x. ( 1 / B ) ) ) = A ) ) |
15 |
10 14
|
mpbird |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |