| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dig |  |-  digit = ( b e. NN |-> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( b ^ -u k ) x. r ) ) mod b ) ) ) | 
						
							| 2 |  | oveq1 |  |-  ( b = B -> ( b ^ -u k ) = ( B ^ -u k ) ) | 
						
							| 3 | 2 | fvoveq1d |  |-  ( b = B -> ( |_ ` ( ( b ^ -u k ) x. r ) ) = ( |_ ` ( ( B ^ -u k ) x. r ) ) ) | 
						
							| 4 |  | id |  |-  ( b = B -> b = B ) | 
						
							| 5 | 3 4 | oveq12d |  |-  ( b = B -> ( ( |_ ` ( ( b ^ -u k ) x. r ) ) mod b ) = ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) | 
						
							| 6 | 5 | mpoeq3dv |  |-  ( b = B -> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( b ^ -u k ) x. r ) ) mod b ) ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) | 
						
							| 7 |  | id |  |-  ( B e. NN -> B e. NN ) | 
						
							| 8 |  | zex |  |-  ZZ e. _V | 
						
							| 9 |  | ovex |  |-  ( 0 [,) +oo ) e. _V | 
						
							| 10 | 8 9 | pm3.2i |  |-  ( ZZ e. _V /\ ( 0 [,) +oo ) e. _V ) | 
						
							| 11 |  | eqid |  |-  ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) | 
						
							| 12 | 11 | mpoexg |  |-  ( ( ZZ e. _V /\ ( 0 [,) +oo ) e. _V ) -> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) e. _V ) | 
						
							| 13 | 10 12 | mp1i |  |-  ( B e. NN -> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) e. _V ) | 
						
							| 14 | 1 6 7 13 | fvmptd3 |  |-  ( B e. NN -> ( digit ` B ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) |