Step |
Hyp |
Ref |
Expression |
1 |
|
df-dig |
|- digit = ( b e. NN |-> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( b ^ -u k ) x. r ) ) mod b ) ) ) |
2 |
|
oveq1 |
|- ( b = B -> ( b ^ -u k ) = ( B ^ -u k ) ) |
3 |
2
|
fvoveq1d |
|- ( b = B -> ( |_ ` ( ( b ^ -u k ) x. r ) ) = ( |_ ` ( ( B ^ -u k ) x. r ) ) ) |
4 |
|
id |
|- ( b = B -> b = B ) |
5 |
3 4
|
oveq12d |
|- ( b = B -> ( ( |_ ` ( ( b ^ -u k ) x. r ) ) mod b ) = ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) |
6 |
5
|
mpoeq3dv |
|- ( b = B -> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( b ^ -u k ) x. r ) ) mod b ) ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) |
7 |
|
id |
|- ( B e. NN -> B e. NN ) |
8 |
|
zex |
|- ZZ e. _V |
9 |
|
ovex |
|- ( 0 [,) +oo ) e. _V |
10 |
8 9
|
pm3.2i |
|- ( ZZ e. _V /\ ( 0 [,) +oo ) e. _V ) |
11 |
|
eqid |
|- ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) |
12 |
11
|
mpoexg |
|- ( ( ZZ e. _V /\ ( 0 [,) +oo ) e. _V ) -> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) e. _V ) |
13 |
10 12
|
mp1i |
|- ( B e. NN -> ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) e. _V ) |
14 |
1 6 7 13
|
fvmptd3 |
|- ( B e. NN -> ( digit ` B ) = ( k e. ZZ , r e. ( 0 [,) +oo ) |-> ( ( |_ ` ( ( B ^ -u k ) x. r ) ) mod B ) ) ) |