| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-dig |
⊢ digit = ( 𝑏 ∈ ℕ ↦ ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝑏 ) ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑ - 𝑘 ) = ( 𝐵 ↑ - 𝑘 ) ) |
| 3 |
2
|
fvoveq1d |
⊢ ( 𝑏 = 𝐵 → ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) = ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) ) |
| 4 |
|
id |
⊢ ( 𝑏 = 𝐵 → 𝑏 = 𝐵 ) |
| 5 |
3 4
|
oveq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝑏 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) |
| 6 |
5
|
mpoeq3dv |
⊢ ( 𝑏 = 𝐵 → ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝑏 ) ) = ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) ) |
| 7 |
|
id |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ ) |
| 8 |
|
zex |
⊢ ℤ ∈ V |
| 9 |
|
ovex |
⊢ ( 0 [,) +∞ ) ∈ V |
| 10 |
8 9
|
pm3.2i |
⊢ ( ℤ ∈ V ∧ ( 0 [,) +∞ ) ∈ V ) |
| 11 |
|
eqid |
⊢ ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) = ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) |
| 12 |
11
|
mpoexg |
⊢ ( ( ℤ ∈ V ∧ ( 0 [,) +∞ ) ∈ V ) → ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) ∈ V ) |
| 13 |
10 12
|
mp1i |
⊢ ( 𝐵 ∈ ℕ → ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) ∈ V ) |
| 14 |
1 6 7 13
|
fvmptd3 |
⊢ ( 𝐵 ∈ ℕ → ( digit ‘ 𝐵 ) = ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝐵 ) ) ) |