| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dig | ⊢ digit  =  ( 𝑏  ∈  ℕ  ↦  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝑏 ) ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏 ↑ - 𝑘 )  =  ( 𝐵 ↑ - 𝑘 ) ) | 
						
							| 3 | 2 | fvoveq1d | ⊢ ( 𝑏  =  𝐵  →  ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  =  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑏  =  𝐵  →  𝑏  =  𝐵 ) | 
						
							| 5 | 3 4 | oveq12d | ⊢ ( 𝑏  =  𝐵  →  ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝑏 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) ) | 
						
							| 6 | 5 | mpoeq3dv | ⊢ ( 𝑏  =  𝐵  →  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝑏 ) )  =  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) ) ) | 
						
							| 7 |  | id | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℕ ) | 
						
							| 8 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 9 |  | ovex | ⊢ ( 0 [,) +∞ )  ∈  V | 
						
							| 10 | 8 9 | pm3.2i | ⊢ ( ℤ  ∈  V  ∧  ( 0 [,) +∞ )  ∈  V ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) )  =  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) ) | 
						
							| 12 | 11 | mpoexg | ⊢ ( ( ℤ  ∈  V  ∧  ( 0 [,) +∞ )  ∈  V )  →  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) )  ∈  V ) | 
						
							| 13 | 10 12 | mp1i | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) )  ∈  V ) | 
						
							| 14 | 1 6 7 13 | fvmptd3 | ⊢ ( 𝐵  ∈  ℕ  →  ( digit ‘ 𝐵 )  =  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝐵 ) ) ) |