| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdig |
⊢ digit |
| 1 |
|
vb |
⊢ 𝑏 |
| 2 |
|
cn |
⊢ ℕ |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
cz |
⊢ ℤ |
| 5 |
|
vr |
⊢ 𝑟 |
| 6 |
|
cc0 |
⊢ 0 |
| 7 |
|
cico |
⊢ [,) |
| 8 |
|
cpnf |
⊢ +∞ |
| 9 |
6 8 7
|
co |
⊢ ( 0 [,) +∞ ) |
| 10 |
|
cfl |
⊢ ⌊ |
| 11 |
1
|
cv |
⊢ 𝑏 |
| 12 |
|
cexp |
⊢ ↑ |
| 13 |
3
|
cv |
⊢ 𝑘 |
| 14 |
13
|
cneg |
⊢ - 𝑘 |
| 15 |
11 14 12
|
co |
⊢ ( 𝑏 ↑ - 𝑘 ) |
| 16 |
|
cmul |
⊢ · |
| 17 |
5
|
cv |
⊢ 𝑟 |
| 18 |
15 17 16
|
co |
⊢ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) |
| 19 |
18 10
|
cfv |
⊢ ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) |
| 20 |
|
cmo |
⊢ mod |
| 21 |
19 11 20
|
co |
⊢ ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝑏 ) |
| 22 |
3 5 4 9 21
|
cmpo |
⊢ ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝑏 ) ) |
| 23 |
1 2 22
|
cmpt |
⊢ ( 𝑏 ∈ ℕ ↦ ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝑏 ) ) ) |
| 24 |
0 23
|
wceq |
⊢ digit = ( 𝑏 ∈ ℕ ↦ ( 𝑘 ∈ ℤ , 𝑟 ∈ ( 0 [,) +∞ ) ↦ ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 ) · 𝑟 ) ) mod 𝑏 ) ) ) |