| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdig | ⊢ digit | 
						
							| 1 |  | vb | ⊢ 𝑏 | 
						
							| 2 |  | cn | ⊢ ℕ | 
						
							| 3 |  | vk | ⊢ 𝑘 | 
						
							| 4 |  | cz | ⊢ ℤ | 
						
							| 5 |  | vr | ⊢ 𝑟 | 
						
							| 6 |  | cc0 | ⊢ 0 | 
						
							| 7 |  | cico | ⊢ [,) | 
						
							| 8 |  | cpnf | ⊢ +∞ | 
						
							| 9 | 6 8 7 | co | ⊢ ( 0 [,) +∞ ) | 
						
							| 10 |  | cfl | ⊢ ⌊ | 
						
							| 11 | 1 | cv | ⊢ 𝑏 | 
						
							| 12 |  | cexp | ⊢ ↑ | 
						
							| 13 | 3 | cv | ⊢ 𝑘 | 
						
							| 14 | 13 | cneg | ⊢ - 𝑘 | 
						
							| 15 | 11 14 12 | co | ⊢ ( 𝑏 ↑ - 𝑘 ) | 
						
							| 16 |  | cmul | ⊢  · | 
						
							| 17 | 5 | cv | ⊢ 𝑟 | 
						
							| 18 | 15 17 16 | co | ⊢ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) | 
						
							| 19 | 18 10 | cfv | ⊢ ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) ) | 
						
							| 20 |  | cmo | ⊢  mod | 
						
							| 21 | 19 11 20 | co | ⊢ ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝑏 ) | 
						
							| 22 | 3 5 4 9 21 | cmpo | ⊢ ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝑏 ) ) | 
						
							| 23 | 1 2 22 | cmpt | ⊢ ( 𝑏  ∈  ℕ  ↦  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝑏 ) ) ) | 
						
							| 24 | 0 23 | wceq | ⊢ digit  =  ( 𝑏  ∈  ℕ  ↦  ( 𝑘  ∈  ℤ ,  𝑟  ∈  ( 0 [,) +∞ )  ↦  ( ( ⌊ ‘ ( ( 𝑏 ↑ - 𝑘 )  ·  𝑟 ) )  mod  𝑏 ) ) ) |