Metamath Proof Explorer


Theorem digfval

Description: Operation to obtain the k th digit of a nonnegative real number r in the positional system with base B . (Contributed by AV, 23-May-2020)

Ref Expression
Assertion digfval B digit B = k , r 0 +∞ B k r mod B

Proof

Step Hyp Ref Expression
1 df-dig digit = b k , r 0 +∞ b k r mod b
2 oveq1 b = B b k = B k
3 2 fvoveq1d b = B b k r = B k r
4 id b = B b = B
5 3 4 oveq12d b = B b k r mod b = B k r mod B
6 5 mpoeq3dv b = B k , r 0 +∞ b k r mod b = k , r 0 +∞ B k r mod B
7 id B B
8 zex V
9 ovex 0 +∞ V
10 8 9 pm3.2i V 0 +∞ V
11 eqid k , r 0 +∞ B k r mod B = k , r 0 +∞ B k r mod B
12 11 mpoexg V 0 +∞ V k , r 0 +∞ B k r mod B V
13 10 12 mp1i B k , r 0 +∞ B k r mod B V
14 1 6 7 13 fvmptd3 B digit B = k , r 0 +∞ B k r mod B