Metamath Proof Explorer


Theorem digfval

Description: Operation to obtain the k th digit of a nonnegative real number r in the positional system with base B . (Contributed by AV, 23-May-2020)

Ref Expression
Assertion digfval BdigitB=k,r0+∞BkrmodB

Proof

Step Hyp Ref Expression
1 df-dig digit=bk,r0+∞bkrmodb
2 oveq1 b=Bbk=Bk
3 2 fvoveq1d b=Bbkr=Bkr
4 id b=Bb=B
5 3 4 oveq12d b=Bbkrmodb=BkrmodB
6 5 mpoeq3dv b=Bk,r0+∞bkrmodb=k,r0+∞BkrmodB
7 id BB
8 zex V
9 ovex 0+∞V
10 8 9 pm3.2i V0+∞V
11 eqid k,r0+∞BkrmodB=k,r0+∞BkrmodB
12 11 mpoexg V0+∞Vk,r0+∞BkrmodBV
13 10 12 mp1i Bk,r0+∞BkrmodBV
14 1 6 7 13 fvmptd3 BdigitB=k,r0+∞BkrmodB