Metamath Proof Explorer


Definition df-dig

Description: Definition of an operation to obtain the k th digit of a nonnegative real number r in the positional system with base b . k = - 1 corresponds to the first digit of the fractional part (for b = 10 the first digit after the decimal point), k = 0 corresponds to the last digit of the integer part (for b = 10 the first digit before the decimal point). See also digit1 . Examples (not formal): ( 234.567 ( digit `10 ) 0 ) = 4; ( 2.567 ( digit10 ) -2 ) = 6; ( 2345.67 ( digit` 10 ) 2 ) = 3. (Contributed by AV, 16-May-2020)

Ref Expression
Assertion df-dig digit=bk,r0+∞bkrmodb

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdig classdigit
1 vb setvarb
2 cn class
3 vk setvark
4 cz class
5 vr setvarr
6 cc0 class0
7 cico class.
8 cpnf class+∞
9 6 8 7 co class0+∞
10 cfl class.
11 1 cv setvarb
12 cexp class^
13 3 cv setvark
14 13 cneg classk
15 11 14 12 co classbk
16 cmul class×
17 5 cv setvarr
18 15 17 16 co classbkr
19 18 10 cfv classbkr
20 cmo classmod
21 19 11 20 co classbkrmodb
22 3 5 4 9 21 cmpo classk,r0+∞bkrmodb
23 1 2 22 cmpt classbk,r0+∞bkrmodb
24 0 23 wceq wffdigit=bk,r0+∞bkrmodb