| Step |
Hyp |
Ref |
Expression |
| 1 |
|
digit2 |
|
| 2 |
1
|
3coml |
|
| 3 |
2
|
3expa |
|
| 4 |
3
|
oveq1d |
|
| 5 |
|
nnre |
|
| 6 |
|
nnnn0 |
|
| 7 |
|
reexpcl |
|
| 8 |
5 6 7
|
syl2an |
|
| 9 |
|
remulcl |
|
| 10 |
8 9
|
sylan |
|
| 11 |
|
reflcl |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
nnrp |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
12 14
|
modcld |
|
| 16 |
|
nnexpcl |
|
| 17 |
6 16
|
sylan2 |
|
| 18 |
17
|
nnrpd |
|
| 19 |
18
|
adantr |
|
| 20 |
|
modge0 |
|
| 21 |
12 14 20
|
syl2anc |
|
| 22 |
5
|
ad2antrr |
|
| 23 |
8
|
adantr |
|
| 24 |
|
modlt |
|
| 25 |
12 14 24
|
syl2anc |
|
| 26 |
|
nncn |
|
| 27 |
|
exp1 |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
adantr |
|
| 30 |
5
|
adantr |
|
| 31 |
|
nnge1 |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
|
nnuz |
|
| 35 |
33 34
|
eleqtrdi |
|
| 36 |
|
leexp2a |
|
| 37 |
30 32 35 36
|
syl3anc |
|
| 38 |
29 37
|
eqbrtrrd |
|
| 39 |
38
|
adantr |
|
| 40 |
15 22 23 25 39
|
ltletrd |
|
| 41 |
|
modid |
|
| 42 |
15 19 21 40 41
|
syl22anc |
|
| 43 |
|
simpll |
|
| 44 |
|
nnm1nn0 |
|
| 45 |
|
reexpcl |
|
| 46 |
5 44 45
|
syl2an |
|
| 47 |
|
remulcl |
|
| 48 |
46 47
|
sylan |
|
| 49 |
|
nnexpcl |
|
| 50 |
44 49
|
sylan2 |
|
| 51 |
50
|
adantr |
|
| 52 |
|
modmulnn |
|
| 53 |
43 48 51 52
|
syl3anc |
|
| 54 |
|
expm1t |
|
| 55 |
|
expcl |
|
| 56 |
44 55
|
sylan2 |
|
| 57 |
|
simpl |
|
| 58 |
56 57
|
mulcomd |
|
| 59 |
54 58
|
eqtrd |
|
| 60 |
26 59
|
sylan |
|
| 61 |
60
|
adantr |
|
| 62 |
61
|
oveq2d |
|
| 63 |
61
|
oveq1d |
|
| 64 |
26
|
ad2antrr |
|
| 65 |
26 44 55
|
syl2an |
|
| 66 |
65
|
adantr |
|
| 67 |
|
recn |
|
| 68 |
67
|
adantl |
|
| 69 |
64 66 68
|
mulassd |
|
| 70 |
63 69
|
eqtrd |
|
| 71 |
70
|
fveq2d |
|
| 72 |
71 61
|
oveq12d |
|
| 73 |
53 62 72
|
3brtr4d |
|
| 74 |
|
reflcl |
|
| 75 |
48 74
|
syl |
|
| 76 |
|
remulcl |
|
| 77 |
22 75 76
|
syl2anc |
|
| 78 |
|
modsubdir |
|
| 79 |
12 77 19 78
|
syl3anc |
|
| 80 |
73 79
|
mpbid |
|
| 81 |
4 42 80
|
3eqtr3d |
|
| 82 |
81
|
3impa |
|
| 83 |
82
|
3comr |
|