| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2l |
|
| 2 |
|
id |
|
| 3 |
2
|
3adant2l |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
oveq1d |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
oveq1d |
|
| 8 |
5 7
|
eqeq12d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
oveq1d |
|
| 14 |
11 13
|
eqeq12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
oveq1d |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
oveq1d |
|
| 20 |
17 19
|
eqeq12d |
|
| 21 |
20
|
imbi2d |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
oveq1d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
oveq1d |
|
| 26 |
23 25
|
eqeq12d |
|
| 27 |
26
|
imbi2d |
|
| 28 |
|
zcn |
|
| 29 |
|
exp0 |
|
| 30 |
28 29
|
syl |
|
| 31 |
|
zcn |
|
| 32 |
|
exp0 |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
eqcomd |
|
| 35 |
30 34
|
sylan9eq |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
|
simp21l |
|
| 39 |
|
simp1 |
|
| 40 |
|
zexpcl |
|
| 41 |
38 39 40
|
syl2anc |
|
| 42 |
|
simp21r |
|
| 43 |
|
zexpcl |
|
| 44 |
42 39 43
|
syl2anc |
|
| 45 |
|
simp22 |
|
| 46 |
|
simp3 |
|
| 47 |
|
simp23 |
|
| 48 |
41 44 38 42 45 46 47
|
modmul12d |
|
| 49 |
38
|
zcnd |
|
| 50 |
|
expp1 |
|
| 51 |
49 39 50
|
syl2anc |
|
| 52 |
51
|
oveq1d |
|
| 53 |
42
|
zcnd |
|
| 54 |
|
expp1 |
|
| 55 |
53 39 54
|
syl2anc |
|
| 56 |
55
|
oveq1d |
|
| 57 |
48 52 56
|
3eqtr4d |
|
| 58 |
57
|
3exp |
|
| 59 |
58
|
a2d |
|
| 60 |
9 15 21 27 37 59
|
nn0ind |
|
| 61 |
1 3 60
|
sylc |
|