Metamath Proof Explorer


Theorem expm1t

Description: Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005)

Ref Expression
Assertion expm1t ANAN=AN1A

Proof

Step Hyp Ref Expression
1 nncn NN
2 ax-1cn 1
3 npcan N1N-1+1=N
4 1 2 3 sylancl NN-1+1=N
5 4 oveq2d NAN-1+1=AN
6 5 adantl ANAN-1+1=AN
7 nnm1nn0 NN10
8 expp1 AN10AN-1+1=AN1A
9 7 8 sylan2 ANAN-1+1=AN1A
10 6 9 eqtr3d ANAN=AN1A