| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 2 | 1 | znegcld | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  - 𝑁  ∈  ℤ ) | 
						
							| 3 |  | elznn | ⊢ ( - 𝑁  ∈  ℤ  ↔  ( - 𝑁  ∈  ℝ  ∧  ( - 𝑁  ∈  ℕ  ∨  - - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  ( - 𝑁  ∈  ℝ  ∧  ( - 𝑁  ∈  ℕ  ∨  - - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  ( - 𝑁  ∈  ℕ  ∨  - - 𝑁  ∈  ℕ0 ) ) | 
						
							| 6 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 8 | 7 | negnegd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  - - 𝑁  =  𝑁 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  ¬  𝑁  ∈  ℕ0 ) | 
						
							| 10 | 8 9 | eqneltrd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  ¬  - - 𝑁  ∈  ℕ0 ) | 
						
							| 11 |  | pm2.24 | ⊢ ( - - 𝑁  ∈  ℕ0  →  ( ¬  - - 𝑁  ∈  ℕ0  →  - 𝑁  ∈  ℕ ) ) | 
						
							| 12 | 11 | jao1i | ⊢ ( ( - 𝑁  ∈  ℕ  ∨  - - 𝑁  ∈  ℕ0 )  →  ( ¬  - - 𝑁  ∈  ℕ0  →  - 𝑁  ∈  ℕ ) ) | 
						
							| 13 | 5 10 12 | sylc | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  𝑁  ∈  ℕ0 )  →  - 𝑁  ∈  ℕ ) |