Step |
Hyp |
Ref |
Expression |
1 |
|
blennn0elnn |
⊢ ( 𝐴 ∈ ℕ0 → ( #b ‘ 𝐴 ) ∈ ℕ ) |
2 |
|
nn0sumshdiglem2 |
⊢ ( ( #b ‘ 𝐴 ) ∈ ℕ → ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = ( #b ‘ 𝐴 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) |
3 |
|
eqid |
⊢ ( #b ‘ 𝐴 ) = ( #b ‘ 𝐴 ) |
4 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝐴 → ( ( #b ‘ 𝑎 ) = ( #b ‘ 𝐴 ) ↔ ( #b ‘ 𝐴 ) = ( #b ‘ 𝐴 ) ) ) |
5 |
|
id |
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) |
6 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑘 ( digit ‘ 2 ) 𝑎 ) = ( 𝑘 ( digit ‘ 2 ) 𝐴 ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ) → ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) |
9 |
8
|
sumeq2dv |
⊢ ( 𝑎 = 𝐴 → Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) |
10 |
5 9
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ↔ 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) ) |
11 |
4 10
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( #b ‘ 𝑎 ) = ( #b ‘ 𝐴 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ( ( #b ‘ 𝐴 ) = ( #b ‘ 𝐴 ) → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
12 |
11
|
rspcva |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = ( #b ‘ 𝐴 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) → ( ( #b ‘ 𝐴 ) = ( #b ‘ 𝐴 ) → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) ) |
13 |
3 12
|
mpi |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = ( #b ‘ 𝐴 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝐴 ∈ ℕ0 → ( ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = ( #b ‘ 𝐴 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) ) |
15 |
2 14
|
syl5 |
⊢ ( 𝐴 ∈ ℕ0 → ( ( #b ‘ 𝐴 ) ∈ ℕ → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) ) |
16 |
1 15
|
mpd |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 = Σ 𝑘 ∈ ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 ) · ( 2 ↑ 𝑘 ) ) ) |