| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blennn0elnn | ⊢ ( 𝐴  ∈  ℕ0  →  ( #b ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 2 |  | nn0sumshdiglem2 | ⊢ ( ( #b ‘ 𝐴 )  ∈  ℕ  →  ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  ( #b ‘ 𝐴 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( #b ‘ 𝐴 )  =  ( #b ‘ 𝐴 ) | 
						
							| 4 |  | fveqeq2 | ⊢ ( 𝑎  =  𝐴  →  ( ( #b ‘ 𝑎 )  =  ( #b ‘ 𝐴 )  ↔  ( #b ‘ 𝐴 )  =  ( #b ‘ 𝐴 ) ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑎  =  𝐴  →  𝑎  =  𝐴 ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑘 ( digit ‘ 2 ) 𝑎 )  =  ( 𝑘 ( digit ‘ 2 ) 𝐴 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  =  ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) )  →  ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  =  ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 9 | 8 | sumeq2dv | ⊢ ( 𝑎  =  𝐴  →  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 10 | 5 9 | eqeq12d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  ↔  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 11 | 4 10 | imbi12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( #b ‘ 𝑎 )  =  ( #b ‘ 𝐴 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) )  ↔  ( ( #b ‘ 𝐴 )  =  ( #b ‘ 𝐴 )  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 12 | 11 | rspcva | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  ( #b ‘ 𝐴 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( ( #b ‘ 𝐴 )  =  ( #b ‘ 𝐴 )  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 13 | 3 12 | mpi | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  ( #b ‘ 𝐴 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝐴  ∈  ℕ0  →  ( ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  ( #b ‘ 𝐴 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) )  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 15 | 2 14 | syl5 | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( #b ‘ 𝐴 )  ∈  ℕ  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 16 | 1 15 | mpd | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  =  Σ 𝑘  ∈  ( 0 ..^ ( #b ‘ 𝐴 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝐴 )  ·  ( 2 ↑ 𝑘 ) ) ) |