Metamath Proof Explorer


Theorem nn0sumshdig

Description: A nonnegative integer can be represented as sum of its shifted bits. (Contributed by AV, 7-Jun-2020)

Ref Expression
Assertion nn0sumshdig A0A=k0..^#b A kdigit2A2k

Proof

Step Hyp Ref Expression
1 blennn0elnn A0#b A
2 nn0sumshdiglem2 #b A a0#b a=#b Aa=k0..^#b Akdigit2a2k
3 eqid #b A = #b A
4 fveqeq2 a=A#b a = #b A #b A=#b A
5 id a=Aa=A
6 oveq2 a=Akdigit2a=kdigit2A
7 6 oveq1d a=Akdigit2a2k=kdigit2A2k
8 7 adantr a=Ak0..^#b A kdigit2a2k=kdigit2A2k
9 8 sumeq2dv a=Ak0..^#b A kdigit2a2k = k0..^#b Akdigit2A2k
10 5 9 eqeq12d a=Aa=k0..^#b A kdigit2a2k A=k0..^#b Akdigit2A2k
11 4 10 imbi12d a=A#b a = #b A a=k0..^#b Akdigit2a2k #b A=#b AA=k0..^#b Akdigit2A2k
12 11 rspcva A0a0#b a = #b A a=k0..^#b Akdigit2a2k #b A=#b AA=k0..^#b Akdigit2A2k
13 3 12 mpi A0a0#b a = #b A a=k0..^#b Akdigit2a2k A=k0..^#b Akdigit2A2k
14 13 ex A0a0#b a = #b A a=k0..^#b Akdigit2a2k A=k0..^#b Akdigit2A2k
15 2 14 syl5 A0#b A A=k0..^#b Akdigit2A2k
16 1 15 mpd A0A=k0..^#b A kdigit2A2k